CSE 521: Design and Analysis of Algorithms

Fall 2019

Problem Set 5

Deadline: December 6th (at 6:00PM) in canvas

1) You are given data containing grades in different courses for 5 students; say $G_{i,j}$ is the grade of student i in course j. (Of course, $G_{i,j}$ is not defined for all i, j since each student has only taken a few courses.) We are trying to "explain" the grades as a linear function of the student's innate aptitude, the easiness of the course and some error term.

$$G_{i,j} = \operatorname{aptitude}_i + \operatorname{easiness}_j + \epsilon_{i,j},$$

where $\epsilon_{i,j}$ is an error term of the linear model. We want to find the best model that minimizes the sum of the $|\epsilon_{i,j}|$'s.

- a) Write a linear program to find aptitude_i and easiness_j for all i, j minimizing $\sum_{i,j} |\epsilon_{i,j}|$.
- b) Use any standard package for linear programming (Matlab/CVX, Freemat, Sci-Python, Excel etc.; we recommend CVX on matlab) to fit the best model to this data. Include a printout of your code, the objective value of the optimum, $\sum_{i,j} |\epsilon_{i,j}|$, and the calculated easiness values of all the courses and the aptitudes of all the students.

	MAT		ANT	REL	POL	ECO	\cos
Alice	В		А	B+	A-	С	
Bob	B+	A-		A-		B+	В
Chris	В	B+			Α	A-	B+
David	A+		B-	Α		A+	B-
Alice Bob Chris David Evan		B-	D	B+	В	В	\mathbf{C}

Assume A = 4, B = 3 and so on. Also, let B = 2.66, B = 3.33 and A = 3.66, A = 4.33 and so on.

2) Write the dual of the LP relaxation of the vertex cover problem. Recall for a graph G = (V, E), the LP relaxation of the vertex cover is as follows:

$$\min \sum_{v} c_{v} x_{v} \\
\text{s.t.,} \quad x_{u} + x_{v} \ge 1 \quad \forall u \sim v, \\
x_{v} \ge 0 \qquad \forall v \in V.$$
(5.1)