
CSE 521: Design and Analysis of Algorithms Fall 2019

Problem Set 2
Deadline: Oct 27 (at 6:00 PM) in Canvas

Instructions

• You should think about each problem by yourself for at least an hour before choosing to collaborate
with others.

• You are allowed to collaborate with fellow students taking the class in solving the problems (in groups
of at most 2 people for each problem). But you must write your solution on your own.

• You are not allowed to search for answers or hints on the web. You are encouraged to contact the
instructor or the TAs for a possible hint.

• You cannot collaborate on Extra credit problems

• Solutions typeset in LATEX are preferred.

• Feel free to use the Discussion Board or email the instructor or the TA if you have any questions or
would like any clarifications about the problems.

• Please upload your solutions to Canvas. The solution to each problem must be uploaded separately.

1) In this problem we see how to use pairwise independent hash functions for de-randomization. Say A is a
randomized algorithm that uses m random bits and will output the optimum solution of a minimization
problem with probability 1/2. In the first lecture we argued that we can improve the success probability
to 1 − 1/2k by simply running k independent copies of A and return the minimum outputted solution.
But that needs O(km) random bits. Prove that for any r ≤ 2m, we can improve the success probability
to 1−1/r using O(m) random bits by running A only O(r) many times. Note that the number of random
bits is independent of r.

2) a) Optional [0-points]: Let X1, . . . , Xn be independent random variables uniformly distributed in [0, 1]
and let Y = min{X1, . . . , Xn}. Show that E [Y] = 1

n+1 and Var(Y) ≤ 1
(n+1)2 .

Consider the following algorithm for estimating F0, the number of unique elements in a sequence x1, . . . , xm

in the set {0, 1, . . . , n−1}. Let h : {0, 1, . . . , n−1} → [0, 1] s.t., h(i) is chosen uniformly and independently
at random in [0, 1] for each i. We start with Y = 1. After reading each element xi in the sequence we let
Y = min{Y, h(xi)}.

b) Show that by the end of the stream 1
E[Y] − 1 is equal to F0.

c) Use the above idea to design a streaming algorithm to estimate the number of distinct elements in the
sequence with multiplicative error 1 ± 󰂃. For the analysis you can assume that you have access to k
independent hash functions as described above. Show that k ≤ O(1/󰂃2) many such hash functions is
enough to estimate the number of distinct elements within 1 + 󰂃 factor with probability at least 9/10.

3) Say we have a sequence of number X1, . . . , Xn ∈ {0, . . . , n − 1}; also let fi =
󰁓n−1

j=0 I[Xj = i] for all
0 ≤ i ≤ n− 1. Given an 󰂃 > 0, we want to output all indices i such that fi ≥ 󰂃n (with high probability).
You can use memory at most O(1

󰂃2 log
C(n)) for any constant C > 0, i.e., it is ok if your algorithm uses

1000 log100 n/󰂃2 amount of memory. The running time of your algorithm is not limited and it can depend
on n. Note that this is a streaming problem and you get the read the input only once. With probability
1− 1/n your algorithm should

2-1

http://canvas.uw.edu

2-2 Problem Set 2: Oct 27 (at 6:00 PM) in Canvas

(a) output all i such that fi ≥ 󰂃n, and

(b) any i in the output of your algorithm should satisfy fi ≥ 󰂃n/2.

Hint: First use a single hash table with a test where any i with fi ≥ 󰂃n passes the test with probability
9/10 and any i where fi < 󰂃n/2 fails the test with probability 9/10. Then use the median trick (and
multiple hash tables) to boost these these probabilities to 1− 1/n2. Finally use a union bound.

4) In this problem you are supposed to implement the NNS algorithm for the hamming distance. You are
given n points P ⊆ {0, 1}d that you are supposed to preprocess and store based on the algorithm that we
discussed in class. Then, you will be given t query points; for each query point you need to find a point
at distance no more than twice the closest point.

In the input files lsh-1.in,lsh-2.in,lsh-3.in you are given n, d, t in this order. The input is followed by points
of P , the i + 1-st row of the input contains the i-th point of P . Then, the input is followed by query
points (so the n+1+ i-th row of the input has the i-th query point). In the i-th line of the output, write
the index of the point P that is closest to the i-th query point. Please submit your code together with
the output to Canvas.

5) Extra Credit: Solve problem 1 using O(m) random bits with running A only O(logC r) many times
where C > 0 is a constant.

http://canvas.uw.edu
http://cs.washington.edu/courses/cse521/lsh-1.in
http://cs.washington.edu/courses/cse521/lsh-2.in
http://cs.washington.edu/courses/cse521/lsh-3.in

