1) In this problem we see how to use pairwise independent hash functions for de-randomization. Say \(A \) is a randomized algorithm that uses \(m \) random bits and will output the optimum solution of a minimization problem with probability \(1/2 \). In the first lecture we argued that we can improve the success probability to \(1 - 1/2^k \) by simply running \(k \) independent copies of \(A \) and return the minimum outputted solution. But that needs \(O(km) \) random bits. Prove that for any \(r \leq 2^m \), we can improve the success probability to \(1 - 1/r \) using \(O(m) \) random bits by running \(A \) only \(O(r) \) many times. Note that the number of random bits is independent of \(r \).

2) a) **Optional [0-points]:** Let \(X_1, \ldots, X_n \) be independent random variables uniformly distributed in \([0, 1]\) and let \(Y = \min\{X_1, \ldots, X_n\} \). Show that \(\mathbb{E}[Y] = \frac{1}{n+1} \) and \(\text{Var}(Y) \leq \frac{1}{(n+1)^2} \).

Consider the following algorithm for estimating \(F_0 \), the number of unique elements in a sequence \(x_1, \ldots, x_m \) in the set \([0, 1, \ldots, n-1]\). Let \(h : \{0, 1, \ldots, n-1\} \to [0, 1] \) s.t., \(h(i) \) is chosen uniformly and independently at random in \([0, 1]\) for each \(i \). We start with \(Y = 1 \). After reading each element \(x_i \) in the sequence we let \(Y = \min\{Y, h(x_i)\} \).

b) Show that by the end of the stream \(\frac{1}{\mathbb{E}[Y]} - 1 \) is equal to \(F_0 \).

c) Use the above idea to design a streaming algorithm to estimate the number of distinct elements in the sequence with multiplicative error \(1 \pm \epsilon \). For the analysis you can assume that you have access to \(k \) independent hash functions as described above. Show that \(k \leq O(1/\epsilon^2) \) many such hash functions is enough to estimate the number of distinct elements within \(1 + \epsilon \) factor with probability at least 9/10.

3) Say we have a sequence of number \(X_1, \ldots, X_n \in \{0, \ldots, n-1\} \); also let \(f_i = \sum_{j=i}^{n-1} \mathbb{I}[X_j = i] \) for all \(0 \leq i \leq n-1 \). Given an \(\epsilon > 0 \), we want to output all indices \(i \) such that \(f_i \geq \epsilon n \) (with high probability). You can use memory at most \(O(\frac{1}{\epsilon^2} \log^C(n)) \) for any constant \(C > 0 \), i.e., it is ok if your algorithm uses \(1000 \log^{100} n / \epsilon^2 \) amount of memory. The running time of your algorithm is not limited and it can depend on \(n \). Note that this is a streaming problem and you get the read the input only once. With probability \(1 - 1/n \) your algorithm should
(a) output all i such that $f_i \geq \epsilon n$, and
(b) any i in the output of your algorithm should satisfy $f_i \geq \epsilon n/2$.

Hint: First use a single hash table with a test where any i with $f_i \geq \epsilon n$ passes the test with probability $9/10$ and any i where $f_i < \epsilon n/2$ fails the test with probability $9/10$. Then use the median trick (and multiple hash tables) to boost these these probabilities to $1 - 1/n^2$. Finally use a union bound.

4) In this problem you are supposed to implement the NNS algorithm for the hamming distance. You are given n points $P \subseteq \{0, 1\}^d$ that you are supposed to preprocess and store based on the algorithm that we discussed in class. Then, you will be given t query points; for each query point you need to find a point at distance no more than twice the closest point.

In the input files lsh-1.in, lsh-2.in, lsh-3.in you are given n, d, t in this order. The input is followed by points of P, the $i + 1$-st row of the input contains the i-th point of P. Then, the input is followed by query points (so the $n + 1 + i$-th row of the input has the i-th query point). In the i-th line of the output, write the index of the point P that is closest to the i-th query point. Please submit your code together with the output to Canvas.

5) **Extra Credit:** Solve problem 1 using $O(m)$ random bits with running A only $O(\log^C r)$ many times where $C > 0$ is a constant.