Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we will discuss a reduction of the nearest neighbor search (NNS) problem to that of finding a locally sensitive hashing function as invented in [IM98].

6.1 Introduction to the Nearest Neighbor Search Problem

The NNS problem is as follows: Suppose \(P \subset \mathbb{R}^d \) is a set of \(n \) points. Given any \(q \in \mathbb{R}^d \) find
\[
\min_{p \in P} \text{dist}(p, q).
\]
The distance here could be any arbitrary distance function; in this lecture we will talk more about \(\ell_1 \) or \(\ell_2 \) distances even though the machinery that we describe can be generalized to a variety of distance functions. Some applications include: web search, document search, or clustering - these are all situations in which knowing how “far” an object is from other objects tells us important information.

A naive solution would be to store all of the points and simply loop over all \(p \in P \) to find the minimum distance. This takes \(O(n \cdot d) \) time and space, which is not good. Ideally we would like to have a query time that is sublinear in \(n \); we may allow for a super-linear amount of memory to store the data structure.

If \(d = 1 \) we could pre-process the points by sorting them and then finding the distance minimizing point would simply reduce to binary searching for \(p \) in a list, and returning the closest of the two adjacent elements in the list. This takes \(O(\log n) \) query time and \(O(n) \) bits of memory.

Extending the pre-processing idea to higher dimensions \(d \) leads to what are known as \(k\text{-}d \) trees: here the idea is to partition the space by using coordinate-aligned planes chosen appropriately for the data at hand. Unfortunately \(k\text{-}d \) trees generally fail to beat the naive approach when \(d = \Omega(\log n) \). It turns out that in all known approaches the size of the data structure (or the query-time) grows exponentially in \(d \).

The main underlying difficulty is the well-known facts in high dimensions, which is usually referred to as the “curse of dimensionality”. Suppose we partition the space by a grid where each cell is a cube of side length \(a \). Then, a cube of side length \(a \) randomly positioned in the space intersects \(2^d \) many cells of the grid. This phenomenon essentially implies that a NNS algorithm based on \(k\text{-}d \) trees takes time \(O(2^d) \) in expectation to look into all of the nearby cells of a query point to find the closest point.

6.2 Reducing to Approximate Nearest Neighbors Search

We now describe the idea of [IM98]. Firstly, instead of solving the exact problem we will look for approximate solutions. That is instead of finding the closest point \(p \) to a query point \(q \), we are happy to find a point \(p \) such that
\[
\text{dist}(p, q) \leq c \cdot \min_{s \in P} \text{dist}(s, q),
\]
where \(c > 1 \) is the approximation factor of in our algorithm. As we will see the memory and the query time of our algorithm will be a function of \(c \).

So, let us define the approximate NNS problem. For \(c > 1, r > 0 \), the \(\text{ANNS}(c, r) \) is defined as follows: Given a set point of points \(P \), construct a data structure such that for any query point \(q \), if there is a point \(p \) such that \(\text{dist}(p, q) \leq r \), it returns a point \(p' \) such that

\[
\text{dist}(p', q) \leq c \cdot r.
\]

If there is no such \(p \), then we return nothing.

It is not hard to see that we can give a \(c \) approximation to the nearest neighbor search problem using the solution to \(\text{ANNS}(c, r) \). In fact, all we need to do is to guess \(\min_{p \in P} \text{dist}(p, q) \) up to a multiplicative factor of \(1 \pm \epsilon \). By an appropriate scaling assume \(\text{diam}(P) = \max_{p, p' \in P} \text{dist}(p, p') \leq 1 \). Also, suppose \(\delta > 0 \) is the minimum possible distance for all pairs of points in our dataset. Roughly speaking, \(1/\delta \) can represent the bit precision of the data points stored in our system. We solve \(\text{ANNS}(c(1 - \epsilon), r) \) for the following values of \(r \),

\[
\delta, (1 + \epsilon)\delta, (1 + \epsilon)^2\delta, \ldots, 1.
\]

We report the minimal value of \(r \) for which we find a point at distance \(c(1 - \epsilon) \) of \(q \). This reduction imposes an additional \(O(\log \frac{1}{\delta}) \) overhead to the query time and the memory of our algorithm. This is because we need to maintain a separate data structure for each possible value of \(r \) in the above sequence.

6.3 Locally Sensitive Hashing functions

From now on we only focus on the \(\text{ANNS}(c, r) \). The main interesting idea of [IM98] is a reduction from this problem to the design of a locally sensitive hash (LSH) function. Roughly speaking, an LSH is a hash function which is sensitive to distance. Ideally, we would like to have a hash function that maps “close points” to the same value with a high probability and maps “far points” to different values. To be more precise, if \(\text{dist}(p, q) \leq r \) we want them to map to the same value, with a high probability, and if \(\text{dist}(p, q) > c \cdot r \) we want them to map to different values with a high probability. Let us give a formal definition

Suppose we have a family a functions \(\mathcal{H} = \{h: P \rightarrow \mathbb{Z}\} \) of maps from our points \(P \) to the set of integers \(\mathbb{Z} \); we say \(\mathcal{H} \) is \((c, c \cdot r, p_1, p_2)\)-LSH if: for all \(p, q \in P \):

\[
\begin{align*}
\text{dist}(p, q) \leq r & \implies \mathbb{P}[h(p) = h(q)] \geq p_1 \\
\text{dist}(p, q) \geq c \cdot r & \implies \mathbb{P}[h(p) = h(q)] \leq p_2
\end{align*}
\]

where the probabilities are over \(h \sim \mathcal{H} \). Ideally, we want to have \(p_1 \gg p_2 \), but as we see this highly depends on the magnitude of \(c \). The main idea in the reduction of [IM98] is that even if \(p_1 \) is slightly larger than \(p_2 \) it is possible to use many independently chosen functions from \(\mathcal{H} \) to boost \(p_1 \) to a number close to 1 and \(p_2 \) to \(1/n \).

Before describing the reduction, let us give an example of LSH for binary vectors. We will see several examples in PS3. Suppose \(P \subseteq \{0, 1\}^d \) with Manhattan distance function

\[
\text{dist}(p, q) = \|p - q\|_1,
\]

i.e. \(\text{dist}(p, q) \) is the number of coordinates at which \(p \) and \(q \) have different bits. Consider the family \(\mathcal{H} := \{h_i\}_{i=1}^d \) where

\[
h_i(p) = p_i
\]
is the ith bit of p. Then observe that for each $p, q \in \{0, 1\}^d$

$$
P [h(p) = h(q)] = \frac{\text{# bits in common}}{\text{total bits}} = \frac{d - \|p - q\|_1}{d} = 1 - \frac{\|p - q\|_1}{d}.
$$

Therefore,

$$
P [h(p) = h(q)] = \begin{cases}
1 - \frac{r}{d} \approx e^{-r/d} & \text{if dist}(p, q) \leq r \\
1 - \frac{cr}{d} \approx e^{-c\cdot r/d} & \text{if dist}(p, q) \geq c \cdot r.
\end{cases}
$$

So, H is $(c, c \cdot r, e^{-r/d}, e^{-c \cdot r/d})$-LSH.

6.4 Reduction to LSH

Now let us discuss the reduction from ANNS(c, r) to LSH? Well if we had a $(r, c \cdot r, p_1, p_2)$-LSH family such that $p_1 \approx 1$ and $p_2 \approx 0$ we could solve the problem as follows: We start by choosing a function $h \sim H$ uniformly at random and we store $h(p)$ for all points in P. Given a query point q, we compute $h(q)$ and see if there is any point $p \in P$ where $h(p) = h(q)$. Note that we can do the lookup in $O(1)$ time using a hash table as we discussed in previous lectures. If there is no such point p, then with high probability there is no point at distance $c \cdot r$ of q. Thus we only need to show that if we are given an $(r, c \cdot r, p_1, p_2)$-LSH family with the assumption $p_1 > p_2$, then we can boost it to get $p_1 \approx 1$ and $p_2 \approx 0$.

We do this boosting in two steps. First, we just try to make p_2 small. To do this it suffices to take k independent hash functions from H, and hash each point $p \in P$ to a k-dimensional vector,

$$
h(p) = [h_1(p), \ldots, h_k(p)].
$$

Then, by the independence of h_1, \ldots, h_k, for any two points p, q,

$$
\text{dist}(p, q) \geq c \cdot r \implies P [h(p) = h(q)] \leq p_2^k.
$$

But this doesn’t help us increase p_1. In fact, the above hash function maps two close points to the same vector with probability at least p_1^k. How do we do this? We choose ℓ independent copies of the above k-dimensional hash function, f_1, f_2, \ldots, f_ℓ, for a sufficiently large ℓ, with high probability there is an i such that $f_i(p) = f_i(q)$. Assume,

$$
f_1(p) = [h_{1,1}(p), \ldots, h_{1,k}(p)]
$$

$$
\vdots
$$

$$
f_\ell(p) = [h_{\ell,1}(p), \ldots, h_{\ell,k}(p)]
$$

It follows that if $\text{dist}(p, q) \leq r$, then

$$
P [\exists i \mid f_i(p) = f_i(q)] = 1 - P [\forall i, f_i(p) \neq f_i(q)]
$$

$$
= 1 - P [f_i(p) \neq f_i(q)]^\ell
$$

$$
\geq 1 - (1 - p_1^k)^\ell
$$

The details of the algorithm is described in Equation 6.4.

Next, we describe how to tune the parameters k, ℓ. We choose k such that $p_2^k = 1/n$. Also, assume

$$
p_1 = p_2^0,
$$

(6.1)
for some $\rho < 1$. As we will see ρ is the main parameter that determines the running time/memory of our algorithm. We choose $\ell = \Theta n^{-\rho} \ln n$.

Fix a query point q; it follows by linearity of expectation that for any i,

$$P \left[\exists p : \text{dist}(p, q) > c \cdot r, f_i(p) = f_i(q) \right] = n \cdot p_2^k \leq 1.$$ \hspace{1cm} \text{(1)}

Summing up over all i, in expectation there are $O(\ell)$ points in our data set which map to the same hash value as q for some i. This implies an overhead of $O(\ell)$ in the query time.

On the other hand, if $\text{dist}(p, q) \leq r$ for some $p \in P$, then

$$P \left[\exists i : f_i(p) = f_i(q) \right] \geq 1 - (1 - p_k^h)^\ell = 1 - (1 - n^{-\rho})^\ell \approx 1 - e^{\ell n^{-\rho}} = 1 - 1/n.$$ \hspace{1cm} \text{(2)}

In summary, for any point p at distance at most r, our algorithm outputs p with probability at least $1 - 1/n$.

The algorithm in expectation had $O(\ell \cdot d)$ overhead to examine $O(\ell)$ points at distance more than $c \cdot r$ from q.

Algorithm 1 LSH Algorithm

Preprocessing:
- Choose $k \cdot \ell$, $h_{1,1}, \ldots, h_{\ell,k}$ functions uniformly at random from \mathcal{H}.
- Construct ℓ hash tables; for all $1 \leq i \leq \ell$ store $f_i(p) = (h_{i,1}(p), \ldots, h_{i,k}(p))$ for all $p \in P$ in the i-th table.
- For all i, sort all values of $\{f_i(p) : p \in P\}$.

Query(q):
- for $i = 1 \rightarrow \ell$ do
 - Compute $f_i(q)$.
 - Find all points p where $f_i(p) = f_i(q)$ using a binary search on table i. For all such points if $\text{dist}(p, q) \leq c \cdot r$, output p.
- end for

6.5 Space and Time Complexity of the Reduction

The algorithm needs to maintain $O(\ell)$ hash tables. In each hash table we need to store $n = |P|$ hash values where each value is a k dimensional vector. So, the space complexity of the algorithm is

$$O(\ell \cdot n \cdot k) = O(n^{1+\rho} \frac{\log n}{\log \frac{1}{p_2}}).$$

For any query point q we need to spend The query time is $O(\ell \cdot k)$ time to compute $f_i(q)$ for all $1 \leq i \leq \ell$. For any candidate close point p we spend $O(d)$ time to calculate $\text{dist}(p, q)$. Let $|O|$ be size of the output, i.e., the number of points at distance $c \cdot r$ from q. In expectation we examine $O(\ell)$ far points that we don’t output. So, the query time is $O(d(\ell + |O|))$ in expectation. So, the query time is

$$O(d(\ell + |O|) + \ell \cdot k) = O \left(n^{\rho} \left(d + \frac{\log n}{\log \frac{1}{p_2}} \right) + |O|d \right).$$

Ignoring lower order terms, in particular the size of the output and the dimension, the algorithm runs with memory $O(n^{1+\rho})$ and querytime $O(n^\rho)$.
Let us calculate ρ for the binary vector example that we described at the beginning. Recall that ρ is chosen such that $p_1 = p_2^\rho$, so

$$\rho = \frac{\ln \frac{1}{p_1}}{\ln \frac{1}{p_2}} = \frac{r/d}{c \cdot r/d} = \frac{1}{c}.$$

For example, if $c = 2$, we need $O(n^{1.5})$ to store hash tables and we have $O(\sqrt{n})$ query time. As we see the query time (and memory) get significantly better as we increase c. In practice, we may tune the parameter c based on the amount of resources available to us.

It has been a very active area of research to design the best of LSH functions for many metrics. In PS3 we design LSH for ℓ_1, ℓ_2 distance where $\rho = 1/c$.

References