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1.1 Optimization

Consider an optimization problem where we are trying to find a solution with minimum cost among a set of
feasible solutions. We say an algorithm, ALG, gives an α-approximation for the problem if for any possible
input to the problem, we have

cost(ALG)

cost(OPT)
≤ α (1.1)

Here, OPT denotes the optimum solution to the problem.

To prove that a given algorithm is an α-approximation, it is sufficient to find a lower-bound for cost(OPT),
and then prove that the ratio between cost(ALG) and this lower-bound for any input is upper-bounded by
α.

1.1.1 Example: Vertex Cover

Here, we give an application of linear programming in designing an approximation algorithm for a graph
problem called vertex cover. We will design a 2-approximation algorithm. This is the best known result
for the vertex cover problem. It is a fundamental open problem to beat the factor 2 approximation for the
vertex cover problem. In the next lecture we will discuss a generalization of vertex cover called the set cover
problem and we see some applications.

Given a graph G = (V,E), we want to find a set S ⊂ V such that every edge in E is incident to at least
one vertex in S. Obviously, we can let S = V . But, here among all such sets S we want to choose a one of
minimal cost, where cost(S) is defined as

∑
i∈S ci if every vertex i has associated cost ci, and |S| if vertices

do not have any cost.

In the first step we write a (integer) program which characterizes the optimum solution. Then, we use this
program to give a lower bound on the optimum solution. We define this problem with a set of variables
xi ∀ i ∈ V , where xi is defined as

xi =

{
1 i ∈ S
0 i /∈ S

(1.2)

Our constraint that every edge must be incident to at least one vertex in S can be written as xi + xj ≥
1 ∀ i ∼ j ∈ E. So, the question is to find values for all xi’s that minimize the cost of the set S subject to the
aforementioned constraint. This can be defined as the following optimization problem

min
∑
i∈V

cixi

s.t., xi + xj ≥ 1, ∀ i ∼ j ∈ E
xi ∈ {0, 1}, ∀ i ∈ V

(1.3)
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Observe that the optimum solution of the above program is exactly equal to the optimum set cover. Note
that this is not a linear program, since we have that xi ∈ {0, 1} for every vertex i, rather than allowing xi
to be a continuous-valued variable. Since the vertex cover problem is NP-hard in general, we do not expect
to ever find a general solver to efficiently solve the above integer program. However, there are commercial
integer programming solver that work great in practice. They solve a set of linear inequality subject to
the each of the underlying variables being 0/1. For many practical applications these program actually
find the optimum solution very fast. So, one should always keep them in mind if we are trying to solve an
optimization problem in practice.

We can relax the above (integer) program by replacing the integer constraint with the constraint that
0 ≤ xi ≤ 1 ∀ i ∈ V . This turns the problem into a linear program. Since this is optimizing over a set of
xi’s that includes the optimum set cover, the optimal value of this linear program will be less than or equal
to the optimal value of the set cover problem, i.e. OPT LP ≤ OPT. The resulting linear program can be
written as

min
∑
i∈V

cixi

s.t., xi + xj ≥ 1, ∀ i ∼ j ∈ E
0 ≤ xi ≤ 1, ∀ i ∈ V

(1.4)

Suppose we have an optimal solution of the above program. We want to round this solution into a set cover
such that the cost of the cover that we produce is within a small factor of the cost of the LP solution.

The idea is to ue a simple thresholding idea: For each vertex i, if xi ≥ 0.5, then we add i to S, otherwise we
don’t include i in S.

Claim 1.1. For any solution x of linear program (1.4), the resulting set S, is a vertex cover

Proof. For a feasible solution x to the linear program, we know that xi + xj ≥ 1 ∀ i ∼ j ∈ E. This means
that for every edge i ∼ j, at least one of xi, xj is at least 0.5.Therefore, for any edge i ∼ j at least one of i, j
is in S. So, S is a vertex cover.

Claim 1.2. For any solution x of linear program (1.4) the resulting set S satisfies∑
i∈S

ci ≤ 2
∑
i

cixi = OPT LP.

This implies that the above algorithm is a 2 approximation for the vertex cover problem.

Proof. ∑
i∈S

ci =
∑

i:xi≥0.5

ci ≤
∑

i:xi≥0.5

2cixi ≤
∑
i

cixi.

Note that in the worst case xi = 0.5 for all vertices i and the above claim is tight.
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1.1.2 Set Cover

Given a set of n elements V = {1, 2, ..., n} and a collection of n sets {S1, S2, ..., Sn} whose union equals
the ground set V , the set cover problem is to choose a set T ⊆ [n] with a minimum cost and subject to a
constraint that T ∩ Si 6= φ, ∀i. The problem is formulated as (1.5).

min
∑
i

xici

s.t.,
∑
i:i∈Sj

xi ≥ 1, ∀j.

xi ∈ {0, 1}

(1.5)

Since the problem (1.5) is an NP-hard problem, it can be relaxed via the Linear Programming, where
the constraint xi ∈ {0, 1} is relaxed to x ≥ 0, to find an optimal point x∗lp such that the optimal value
corresponding to x∗lp is a lower bound to the the original problem. Next, a randomized rounding is used,
that is

Yi =

{
1, w.p. αxi

0, otherwise
(1.6)

The analysis of the randomized rounding

P

∑
i∈Sj

Yi = 0

 = P [Yi = 0,∀i ∈ Sj ]

=
∏
i∈Sj

P [Yi = 0]

=
∏
i∈Sj

(1− αxj)

≤
∏
i∈Sj

e−αxi

≤ e
−

∑
i∈Sj

αxi

≤ e−α

If we choose α = log 2m, we have P

[ ∑
i∈Sj

Yi = 0

]
≤ 1

2m . So, P

[ ∑
i∈Sj

Yi ≥ 0

]
≥ 1 − 1

2m , which means with

union bound in every set w.p. 1
2 , we have a probability 1. Furthermore, by the Markov inequality,

E

[∑
i

ciYi

]
= α

∑
i

xici ≤ 2α ·OPT LP ≤ 2α ·OPT (1.7)
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1.2 The LP Duality

Before introducing the concept of the duality, a simple example is firstly shown as below.

min 2x1 + 3x2

s.t., x1 + 2x2 ≥ 1

3x1 + 2x2 ≥ 2

x1, x2 ≥ 0

(1.8)

By multiplying y1 and y2 separately to the two constraints and sum them up, then we get (y1 + 3y2)x1 +
(2y1 + 2y2)x2 ≥ y1 + 2y2. Aligning the objective functions and the the summed term, we obtain a dual
problem as (1.9).

max y1 + 2y2

s.t., y1 + 3y2 ≤ 2

2y1 + 2y2 ≤ 3

y1, y2 ≥ 0

(1.9)

Then we generalize the LP primal-dual problems as follows:

min 〈c,x〉
s.t., Ax ≥ b

x ≥ 0

(1.10)

where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. So we can define the dual of the above LP as (1.11), where y ∈ Rm.

max 〈b,y〉
s.t., ATy ≤ c

y ≥ 0

(1.11)

Then, the weak duality theorem and the strong duality theorem are introduced as follows:

Theorem 1.3 (Weak Duality). If x is a feasible solution of P = min{〈c,x〉|Ax ≥ b,x ≥ 0} and y is a
feasible solution of D = max{〈b,y〉|ATy ≤ c,y ≥ 0}, then

〈c,x〉 ≥ 〈y, b〉.

In other word, any feasible solution of the dual gives a lower bound on the optimum solution of the primal.

Proof. Since y ≥ 0 and Ax ≥ b, we get
〈b,y〉 ≤ 〈Ax,y〉. (1.12)

Also, since ATy ≤ c, we have
〈Ax,y〉 = 〈ATy,x〉 ≤ 〈c,x〉. (1.13)

Thus, we can get 〈y, b〉 ≤ 〈c, x〉 and we are done.

Theorem 1.4 (strong duality). For any LP and its dual, one of the following holds:
1. The primal is infeasible and the dual has unbounded optimum.
2. The dual is infeasible and the primal has unbounded optimum.
3. Both of them are infeasible.
4. Both of them are feasible and their optimum value is equal.
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1.3 Applications of the LP Duality

In this section, we discuss one important application of duality. It is the Minimax theorem which proves
existence of Mixed Nash equilibrium for two-person zero-sum games and proposes an LP to find it. Before
stating this, we need a couple of definitions. A two-person game is defined by four sets (X,Y,A,B) where

1. X and Y are the set of strategies of the first and second player respectively.

2. A and B are real-valued functions defined on X ∗ Y .

The game is played as follows. Simultaneously, Player (I) chooses x ∈ X and Player (II) chooses y ∈ Y ,
each unaware of the choice of the other. Then their choices are made known and (I) wins Ai,j and (II) wins
Bi,j . A and B are called utility function for player (I) and (II), and obviously the goal of both players is to
maximize their utility. The game is called a zero-sum game if A = −B.

A mixed strategy for a player is just a distribution over his/her strategies. The last thing we need to define
is mixed Nash equilibrium.

Definition 1.5 (Pure Nash equivalence). A pair (i∗, j∗) is pure equivalent if nobody wants to deviate, where
max
j
Bi∗,j = Bi∗,j∗ and max

i
Ai,j∗ = Ai∗,j∗ .

It is proved by Nash that every n-person game has one Nash equilibrium. In general, finding the Nash
equilibrium is a very hard problem. However, in the case of two-player zero-sum games there is a polynomial
time algorithm to find it. In particular, let (X,Y,A) represents a two-player zero-sum game. If x and y are
two mixed strategies for (I) and (II), then one can see the expected utility of (I) is xTAy and for (II) it
is −xTAy. So the player (I) wants to maximize xTAy and (II) wants to minimize it. Then there are the
mixed strategies x∗,y∗ for (I) and (II) satisfying

max
x

min
y

xTAy = min
y

max
x

xTAy = x∗TAy∗, (1.14)

then (x∗,y∗) is a mixed Nash equilibrium. The following nice result by Neumann guarantees (x∗,y∗) exists
and gives an LP such that its optimum solution is x∗ and the optimum solution of its dual is y∗. The proof
is an application of the strong duality theorem.

Theorem 1.6 (The Minimax Theorem). For every two-person zero-sum game (X,Y,A) there is a mixed
strategy x∗ for player I and a mixed strategy y∗ for player (II) such that,

max
x

min
y

xTAy = min
y

max
x

xTAy = x∗TAy∗, (1.15)

where in the above x and y represent mixed strategies for (I) and (II) respectively. Moreover, x∗ and y∗ can
be found by an LP.

Proof. Let a1, ..., an and a1, ..., am be columns and rows of A respectively. Firstly, observe that for a vector
x,

min
y

xTAy = min
i

xTA1i = min
i
< x, ai >, (1.16)

because Ay is a distribution over a1, ..., an. Taking the maximum over all distribution x, we have

max
x

min
y

xTAy = max
x

min
i
< x, ai > (1.17)

Therefore we obtain the following

max
x

min
i
< x, ai >= min

y
max
i

< ai,y >= x∗Ay∗. (1.18)
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Both max
x

min
i

< x, ai > and min
y

max
i

< ai,y > can be formulated by LPs. Then the idea is to show the

corresponding LP’s are dual of each other and feasible, so they are equal by the strong duality theorem.
First, note that max

x
min
i
< x, ai > is equivalent to

max t

s.t., < x, ai >≥ t, 1 ≤ i ≤ n
m∑
i=1

xi = 1

xi ≥ 0, ∀1 ≤ i ≤ m

(1.19)

We can write the dual of the above LP as follows: We have a dual variable yi corresponding to each primal
constraint < x, ai >≥ t and a dual variable w corresponding to the constraint

∑m
i=1 xi = 1. Since yi’s

correspond to the inequality of constraints in the primal, we need non-negative constraints on yi’s. Since
w corresponds to an equality constraint, it will be a free variable. The objective function must be minw,
because only the primal constraint corresponding to w has a constant term. In the dual we need to have
m + 1 constraints, one for the primal variable t and the other m constraints are for the xi’s. Since only t
appears in the objective of the primal, the constraint corresponding to t has a constant term 1. The dual
constraint corresponding to xi will be as follows:

m∑
j=1

−ai,jyi + w ≥ 0, (1.20)

or equivalently, w− < y, ai >≥ 0. This gives the following dual formulation:

min w

s.t., w− < y, ai >≥ 0, ∀1 ≤ i ≤ m
m∑
i=1

yi = 1

yi ≥ 0, ∀1 ≤ i ≤ n

(1.21)

Now, observe that this is exactly the LP corresponding to min
y

max
i

< ai,y >. Moreover, let x and y be

arbitrary distributions and w = max
i

< y, ai > and t = min
i
< x, ai >, shows that both are feasible. So, by

the duality theorem,
max
x

min
i
< x, ai >= min

y
max
i

< ai,y > . (1.22)

Let x∗ and y∗ be the optimal solutions of the primal and dual respectively. Then, we have (1.23) and (1.24).

min
i
< x∗, ai >= max

i
< ai,y∗ > . (1.23)

min
y

x∗Ay = min
i
< x∗, ai >= max

i
< ai,y∗ >= max

x
xTAy∗ (1.24)

But this means that
x∗Ay∗ ≤ max

x
Ay∗ = min

y
x∗Ay ≤ x∗Ay∗. (1.25)

So, all of the above inequalities must be equalities.
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