
CSE 521: Design and Analysis of Algorithms I Fall 2018

Lecture 16: Introduction to Linear Programming
Lecturer: Shayan Oveis Gharan 11/26/18

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

16.1 Expander Graphs

Let G = (V,E) be a d-regular graph. Recall that G is d regular if the degree of all vertices of G is exactly
equal to d. Let L̃ = L/d be the normalized Laplacian matrix of G with eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

We say G is a (weak) expander if λ2 ≥ Ω(1), i.e., λ2 is bounded away from 0; it is an absolute constant
independent of the size of G. In general, this definition can be a bit confusing because for a fixed graph the
number of vertices is a constant and λ2 will also be a fixed constant. So, a more rigorous definition is the
following: An infinite sequence G1, G2, . . . , of d-regular graphs where the size goes to infinity is a sequence
of expander graphs if there exists c > 0 such that for all i the second smallest eigenvalue of the normalized
Laplacian of Gi is at least c.

Expander graph can be seen as sparse version of the complete graph. Let G = (V,E) be an expander graph
(with n vertices). Then it has the following properties:

i) The diameter of an expander graph is O(log n). In particular, for any pair of vertices i, j of G, the
shortest path connecting i to j has length at most O(log n).

ii) φ(G) ≥ Ω(1). Recall that by Cheeger’s inequality φ(G) ≥ λ2/2. So, since λ2 ≥ Ω(1), φ(G) ≥ Ω(1).
Therefore, for any set S such that vol(S) ≤ vol(V)/2, φ(S) ≥ Ω(1). In other words, a constant fraction
of edges incident to vertices of S leave the set S. That in a sense means that G is unclusterable. Note
that there are expander graphs with d = 3. These graphs are locally very sparse; every vertex has only
3 neighbors. Nonetheless, globally, there are very connected. If we want to break the network into two
sets of almost equal size we have to cut a constant fraction of edges of G.

iii) Random walks mix rapidly in expander graphs. A simple random walk on an (undirected) graph G is
defined as follows: Given a vertex v move to a uniformly random neighbor of v. It follows that if G is
an expander, then a random walk started at an arbitrary vertex of G will be at an (almost) uniformly
random vertex of G at time O(log n). In other words, the walk completely forgets where it has started
from.

For the sake of comparison note that a cycle of length n has none of the above properties. It has diameter
n and the random walk started at vertex 0 takes time O(n2) to be at a uniformly random vertex of it.

We say that a graph G is a strong expander if λ2 ≥ 1−O(1)/
√
d. The best bound that we can hope for is

λ2 ≥ 1− 2
√
d− 1

d
.

These family of graphs are called Ramanujan and they are the best expanders that we can hope for. It turns
out that these graphs are not very rare, as a random d regular is almost Ramanujan with high probability,
this is a result due to Friedman.

16-1

16-2 Lecture 16: Introduction to Linear Programming

Expander mixing lemma shows that strong expanders are very similar to d regular graphs, in the following
sense: Let G be a strong d-regular strong expander and let H be a graph where for every pair i, j of vertices
there is an edge connecting i to j with probability d/n. Then, for any two disjoint sets S, T of vertices of
size |S|, |T | ≥ Ω(n), the number of edges between S, T in G and H are almost the same. See Problem 2 of
PS4 for the exact statement.

Another important fact about expander graphs is that many NP-hard optimization problems become easier
on expander graphs in the sense that we can design algorithms with significantly better approximation
factors if the underlying graph is an expander. We see one such example in Problem 2 of PS4. But the
general fact follows from the expander mixing lemma: Expander graphs are similar to random graphs and
complete graphs. Many problems such as max cut, min conductance cut, etc. are easier on random graphs
and complete graphs and henceforth they are easier on expander graphs. For a concrete example, note that
since λ2 ≥ Ω(1) in an expander graphs, and by Cheeger’s inequality, λ2/2 ≤ φ(G) ≤

√
2λ2, we can obtain a

constant factor approximation algorithm for φ(G) if G is an expander simply by outputing λ2 as an estimate
of φ(G). This is despite the fact the best known approximation algorithm for φ(G) in general graph is an
O(
√

log n) approximation algorithm of Arora, Rao and Vazirani [ARV09].

16.2 Linear Programming

Linear systems are easiest class of optimization problems. Roughly speaking, any linear system of equations
can be solved efficiently. The easiest examples are linear systems of equalities. This systems can be solved
by matrix inversion. Given a (full rank) matrix A, to solve Ax = b, it is enough to compute A−1b. In linear
programming we study system of linear inequalities.

In the first few lectures we study linear systems of inequalities, also known as Linear Programming (LP).
We also allow for a linear cost (or objective) function. LPs can be used to solve problems in a wide range of
disciplines from engineering to nutrition and the stock market, At some point it was estimated that half of
all computational tasks in the world correspond to solving linear programs.

A general LP can be formalized as follows:

min
x
〈c, x〉

s.t. Ax ≤ b,
(16.1)

where x ∈ Rn is represents the variables, c ∈ Rn defines the objective function, and A ∈ Rm×n and b ∈ Rm

define the constraints. The above form is fairly general; one can model various types of constraints in this
form. For example, a constraint 〈a1, x〉 ≥ b1 can be written as 〈−a1, x〉 ≤ −b1. Or, a constraint 〈a1, x〉 = b1
can be written as 〈a1, x〉 ≤ b1 and 〈−a1, x〉 ≤ −b1.

The objective function can be viewed as a hyperplane in Rn with normal vector c. Further, one can express
the constraint matrix A as a series of row vectors:

A =


aT1
aT2
...
aTm

 .
When viewed from this perspective, it is easy to see the constraint set aTi x ≤ bi, i ∈ {1, 2, . . . ,m} as the
intersection of finitely many half-spaces. The feasible set an LP is called a polyhedron. Thus, the solution
will always be one of the following three cases shown in Figure 16.1.

Lecture 16: Introduction to Linear Programming 16-3

a1

a2

(a) Infeasible domain of x: No so-
lution.

a1

a2

a3

a4

c

(b) Unbounded domain of
x: x∗ = ±∞

a1

a2

a3

a4

a5

cx∗

(c) Closed, bounded and compact do-
main of x: at least one vertex of the
domain of x is in the solution set x∗.

Figure 16.1: The possible domains of the solution variable x for an LP, along with the solution.

There are many well known ways of solving LPs, but two of the most well known and used are Interior Point
Methods (IPMs) and the simplex method. The simplex method is based on a very geometrically intuitive
idea: start at a vertex of the domain of x and move to an adjacent vertex with lower objective - continue
until an optimal solution is reached. Theoretically, the worst case time complexity of the simplex method is
exponential; however, the simplex method is very fast in practice, and toolboxes such as CPLEX and Gurobi
can solve very large LPs (millions of solution variables) in a few seconds. Interior point methods have better
theoretical bounds; roughly speaking, using an interior point method, one can solve a general linear program
with n variables by solving Õ(

√
n) many systems of linear equalities.

16.3 Convex Programming

Definition 16.1 (Convex Functions). A function f : Rn → R is convex on a set S ⊆ Rn if for any two
points x, y ∈ S, we have

f

(
x+ y

2

)
≤ 1

2
(f(x) + f(y)).

We say f is concave if for any such x, y ∈ S, we have

f (f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y),

for any 0 ≤ α ≤ 1. There is an equivalent definition of convexity: For a function f : Rn → R, the Hessian of
f , ∇2f is a n× n matrix defined as follows:

(∇2f)i,j = ∂xi∂xjf

for all 1 ≤ i, j ≤ n. We can show that f is convex over S if and only if for all a ∈ S,

∇2f
∣∣∣
x=a
� 0.

For example, consider the function f(x) = xTAx for x ∈ Rn and A ∈ Rn×n. Then, ∇2f = A. So, f is
convex (over Rn) if and only if A � 0.

For another example, let f : R→ R be f(x) = xk for some integer k ≥ 2. Then, f ′′(x) = k(k − 1)xk−2. If k
is an even integer, f ′′(x) ≥ 0 over all x ∈ R, so f is convex over all real numbers. On the other hand, if k is
an odd integer then f ′′(x) ≥ 0 if and only if x ≥ 0. So, in this f is convex only over non-negative reals.

16-4 Lecture 16: Introduction to Linear Programming

Similarly, f is concave over S, if ∇2f
∣∣∣
x=a
� 0 for all a ∈ S. For example, x 7→ log x is concave over all

positive reals.

A norm ‖·‖ is defined as a function that maps Rn to R and satisfies the following three properties,

i) ‖x‖ ≥ 0 for all x ∈ Rn,

ii) ‖αx‖ = α ‖x‖ for all α ≥ 0 and x ∈ Rn,

iii) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

It is easy to see that any norm function is a convex function: This is because for any x, y ∈ Rn, and
0 ≤ α ≤ 1,

‖αx+ (1− α)y‖ ≤ ‖αx‖+ ‖(1− α)y‖ = α ‖x‖+ (1− α) ‖y‖ .

Definition 16.2 (Convex Set). We say a set S ⊆ Rn is convex if for any pair of points x, y ∈ S, the line
segment connecting x to y is in S.

For example, let f : Rn → R be a convex function over a set S ⊆ Rn. Let t ∈ R, and define

T = {x ∈ Rn : f(x) ≤ t}.

Then, T is convex. This is because if x, y ∈ T , then for any 0 ≤ α ≤ 1,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ≤ αt+ (1− α)t = t

where the first inequality follows by convexity of f . So, αx+ (1− α) ∈ T and T is convex.

We can generalize linear programming to convex programming as follows:

min f(x)

s.t., f1(x) ≤ b1
...

fm(x) ≤ bm

where f, f1, . . . , fm are convex functions over the domain of x. Note that if fi’s are convex only over a convex
set S of Rn, we can limit x to be inside S.

Note that since each fi is convex, the set of x satisfying fi(x) ≤ bi is a convex set, and the intersection of
convex sets is also convex. Therefore the set of x feasible in the above program is a convex set. In general,
we can do optimization over convex sets as long as they are well represented.

For a well-defined example, the program maxxTAx for a PSD matrix A returns the largest eigenvector and
eigenvalue of A. Now, we may add arbitrary constraints. For example, we can say we want to find a vector
x of largest quadratic form subject to x1 = 1 and x2 = −3.

As another side note, observe that for a convex function f , the set x where fi(x) ≥ bi is not necessarily a
convex set. For a concrete example, if f : R→ R, which maps x 7→ |x|, then |x| ≥ 1 = {−∞, 1} ∪ {1,∞} is
not even a “connected” set let alone being convex.

Lecture 16: Introduction to Linear Programming 16-5

16.4 Semidefinite Programming

Suppose we have a convex set S ⊆ Rn. We can represent S by infinitely many constraint as follows: For
every point y in the boundary of S, let vy be the unit vector orthogonal to the hyperplane that is tangent to
S at x, and suppose 〈y, vy〉 ≥ 0. It follows that for every point x ∈ S, 〈x, vy〉 ≥ 0. So, we can represent S by

〈x, vy〉 ≥ 0 for every y in boundary of S.

The above constraints defines a linear program with an infinitely many constraints. There is a well-known
theorem which says we can do optimization over such a linear program as long as we have access to a
separation oracle.

Theorem 16.3. Suppose we have a linear program with infinitely many constraints. Suppose that for every
given point x we can certify that either x is feasible and if x is not feasible we can efficiently output a
constraint 〈a, x〉 ≤ b for a vector a which is violated by x. Then we can find a point which 1± ε multiplicative
factor of the optimum in time polynomial in the dimension n, and log(1/ε).

For example, suppose we have a symmetric matrix X ∈ Rn×n of variables, and we want to enforce the
constraint X � 0, i.e., that X is a PSD matrix. We can represent this constraint with infinitely many linear
constraints: ∑

i,j

aiXi,jaj = aTXa ≥ 0, ∀a ∈ Rn.

Now, let us discuss how to design a separation oracle for the above infinitely many constraints. Given a PSD
matrix X we need to check if it feasible and if not we need to efficiently find a violated constraint. So, given
a matrix X, i.e., an assignment to the underlying variables of X, we find the smallest eigenvector v and the
corresponding eigenvalue λ of X. If λ ≥ 0 we output that X is feasible; otherwise,

vTXv < 0

is a violated constraint. This allows us to solve semidefinite programs by reducing them to linear programs
with infinitely many constraints:

max C •X
s.t., A1 •X ≤ b1

...

Am •X ≤ bm
X � 0.

Note that any term Ai •X = Tr(ATX) is a linear function in X so the above program is a bunch of linear
inequalities in the underlying variables X1,1, X1,2 . . . , Xn,n of X together with a PSD constraint X � 0. This
also can be solved efficiently in polynomial time.

References

[ARV09] S. Arora, S. Rao, and U. Vazirani. “Expander Flows, Geometric Embeddings and Graph Parti-
tioning”. In: J. ACM 56.2 (Apr. 2009), 5:1–5:37 (cit. on p. 16-2).

	Expander Graphs
	Linear Programming
	Convex Programming
	Semidefinite Programming

