
CSE 521: Design and Analysis of Algorithms Fall 2018

Problem Set 4
Deadline: Dec 5th in Canvas

1) Let G be a d-regular connected graph, and let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the
normalized Laplacian matrix of G, L̃G. Show that G is bipartite if and only if λn = 2.

Hint: Recall that normalized Laplacian matrix of a d-regular graph is L̃ = L/d = (dI −A)/d = I −A/d.
Define M̃ = I + A/d. Observe that M̃ = 2I − L̃. Prove that if λ is an eigenvalue of L̃ then 2 − λ is an
eigenvalue of M̃ . Therefore, 2 is the largest eigenvalue of L̃ if and only if 0 is the smallest eigenvalue of
M̃ . So, to prove the claim it is enough to show that G is bipartite if and only if the smallest eigenvalue
of M̃ is zero.

Now, recall that for any vector x, xT L̃x =
∑

i∼j
1
d (xi − xj)2. Prove that for any vector x,

xT M̃x =
∑
i∼j

1

d
(xi + xj)

2.

So, to prove the claim show that G is bipartite if and only if minx x
T M̃x = minx

∑
i∼j

1
d (xi + xj)

2 = 0.

Extra Credit: Prove the claim for non-regular graphs G.

2) We say a graph G is an expander graph if the second eigenvalue of the normalized Laplacian matrix (L̃G),
λ2 is at least a constant independent of the size of G. It follows by Cheeger’s inequality that if G is an
expander, then φ(G) ≥ Ω(1) independent of the size of G. It turns out that many optimization problems
are “easier” on expander graphs. In this problem we see that the maximum cut problem is easy in strong
expander graphs. First, we explain the expander mixing lemma which asserts that expander graphs are
very similar to complete graphs.

Theorem 4.1 (Expander Mixing Lemma). Let G be a d-regular graph and 1 = λ1 ≥ λ2 ≥ . . . λn ≥ −1
be the eigenvalues of the normalized adjacency matrix of G, A/d. Let λ∗ = max{λ2, |λn|}. Then, for any
two disjoint sets S, T ⊆ V , ∣∣∣∣|E(S, T )| − d · |S| · |T |

n

∣∣∣∣ ≤ d · λ∗√|S||T |.
Note that d|S||T |/n is the expected number of edges between S, T in a random graph where is an edge
between each pair of vertices i, j with probability d/n. So, the above lemma says that in an expander
graph, for any large enough sets |S|, |T |, then the number of edges between S, T is very close to what you
see in a random graph.

Use the above theorem to design an algorithm for the maximum cut problem that for any d regular graph
returns a set T such that

|E(T, T )| ≥ (1− 4λ∗) max
S
|E(S, S)|.

Note that the performance of such an algorithm may be terrible if λ∗ > 1/4, but in strong expander
graphs, we have λ∗ � 1; for example, in Ramanujan graphs we have λ∗ ≤ 2/

√
d. So the number of edges

cut by the algorithm is very close to optimal solution as d → ∞. It turns out that in random graph
λ∗ ≤ 2/

√
d with high probability. So, it is easy to give a 1 +O(1/

√
d) approximation algorithm for max

cut in most graphs.
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3) You are given data containing grades in different courses for 5 students; say Gi,j is the grade of student
i in course j. (Of course, Gi,j is not defined for all i, j since each student has only taken a few courses.)
We are trying to “explain” the grades as a linear function of the student’s innate aptitude, the easiness
of the course and some error term.

Gi,j = aptitudei + easinessj + εi,j ,

where εi,j is an error term of the linear model. We want to find the best model that minimizes the sum
of the |εi,j |’s.

a) Write a linear program to find aptitudei and easinessj for all i, j minimizing
∑

i,j |εi,j |.
b) Use any standard package for linear programming (Matlab/CVX, Freemat, Sci-Python, Excel etc.; we

recommend CVX on matlab) to fit the best model to this data. Include a printout of your code, the
objective value of the optimum,

∑
i,j |εi,j |, and the calculated easiness values of all the courses and

the aptitudes of all the students.

MAT CHE ANT REL POL ECO COS
Alex C+ B B+ A- C
Billy B- A- A+ D+ B
Chris B- B+ A- B B+
David A+ B- A A-
Elise B- D+ B+ B C+

Assume A = 4, B = 3 and so on. Also, let B+ = 3.33 and A− = 3.66.

4) In the congestion minimization problem we are given a connected (undirected) graph G = (V,E) and a
set of pairs si, ti of vertices of G for 1 ≤ i ≤ k. We want to choose exactly one path between each pair
si, ti (k paths in total) such that for each edge e ∈ G, the number of paths that use e is as small as
possible. Consider the following LP-relaxation for this problem:

min z

s.t.
∑

P :e∈P
fP ≤ z ∀e∑

P∈Psi,ti

fP = 1 ∀i

fP ≥ 0 ∀P.

(4.1)

Here, Psi,ti represent the set of all paths connection si to ti.

a) Prove that the above LP gives a relaxation of the problem

b) Extra Credit: Design an algorithm to round the solution to exactly one path connecting each si to
ti.

c) Extra Credit: Prove that your algorithm gives an approximation factor of O(log n/ log log n) to the
problem.

5) Extra Credit. In this problem we see applications of expander graphs in coding theory. Error correcting
codes are used in all digital transmission and data storage schemes. Suppose we want to transfer m bits
over a noisy channel. The noise may flip some of the bits; so 0101 may become 1101. Since the transmitter
wants that the receiver correctly receives the message, he needs to send n > m bits encoded such that
the receiver can recover the message even in the presence of noise. For example, a naive way is to send
every bit 3 times; so, 0101 becomes 000111000111. If only 1 bit were flipped in the transmission receiver
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can recover the message but even if 2 bits are flipped, e.g., 110111000111 the recover is impossible. This
is a very inefficient coding scheme.

An error correcting code is a mapping C : {0, 1}m → {0, 1}n. Every string in the image of C is called a
codeword. We say a coding scheme is linear, if there is a matrix M ∈ {0, 1}(n−m)×n such that for any
y ∈ {0, 1}n, y is a codeword if and only if

My = 0.

Note that we are doing addition and multiplication in the field F2.

a) Suppose C is a linear code. Construct a matrix A ∈ {0, 1}n×m such that for any x ∈ {0, 1}m, Ax is a
code word and that for any distinct x, y ∈ {0, 1}m, Ax 6= Ay.

The rate of a code C is defined as r = m/n. Codes of higher rate are more efficient; here we will be
interested in designing codes with r being an absolute constant bounded away from 0. The Hamming
distance between two codewords c1, c2 is the number of bits that they differ, ‖c1 − c2‖1. The minimum
distance of a code is minc1,c2 ‖c1 − c2‖1.

b) Show that the minimum distance of a linear code is the minimum Hamming weight of its codewords,
i.e., minc ‖c‖1.

Note that if C has distance d, then it is possible to decode a message if less than d/2 of the bits are
flipped. The minimum relative distance of C is δ = 1

n min ‖c1 − c2‖1. So, ideally, we would like to have
codes with constant minimum relative distance; in other words, we would like to say even if a constant
fraction of the bits are flipped still one can recover the original message.

Next, we describe an error correcting code scheme based on bipartite expander graphs with constant rate
and constant minimum relative distance. A (nL, nR, D, γ, α) expander is a bipartite graph G(L ∪ R,E)
such that |L| = nL, |R| = nR and every vertex of L has degree D such that for any set S ⊆ L of size
|S| ≤ γnL,

N(S) ≥ α|S|.

In the above, N(S) ⊆ R is the number of neighbors of vertices of S. One can generate the above family
of bipartite expanders using ideas similar to Problem 1. We use the following theorem without proving
it.

Theorem 4.2. For any ε > 0 and m ≤ n there exists γ > 0 and D ≥ 1 such that a (n,m,D, γ,D(1− ε))-
expander exists. Additionally, D = Θ(log(nL/nR)/ε) and γnL = Θ(εnR/D).

Now, we describe how to construct the matrix M . We start with a (nL, nR, D, γ,D(1 − ε)) expander
for nL = n, nR = n −m. For our calculations it is enough to let n = 2m. We name the vertices of L,
{1, 2, . . . , n}; so each bit of a codeword corresponds to a vertex in L. We let M ∈ {0, 1}(n−m)×n be the
Tutte matrix corresponding to this graph, i.e., Mi,j = 1 if and only if the i-th vertex in R is connected to
the j-th vertex in L. Observe that by construction this code has rate 1/2. Next, we see that δ is bounded
away from 0.

c) For a set S ⊆ L, let U(S) be the set of unique neighbors of S, i.e., each vertex in U(S) is connected
to exactly one vertex of S. Show that for any S ⊆ L such that |S| ≤ γn,

|U(S)| ≥ D(1− 2ε)|S|.

d) Show that if ε < 1/2 the minimum relative distance of C is at least γn.

The decoding algorithm is simple to describe but we will not describe it here.

http://canvas.uw.edu

