1) Prove the following Matrix equations:

a) Let $A \in \mathbb{R}^{n \times n}$ and let $U \in \mathbb{R}^{n \times k}$ be a matrix with orthonormal columns U_1, \ldots, U_k. So, $UU^T = \sum_{i=1}^k U_i U_i^T$ is a projection matrix. Show that
$$\|A - UU^T A\|_F^2 = \|A\|_F^2 - \|U^T A\|_F^2.$$

b) Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$. Show that AB and BA have the same set of nonzero eigenvalues, i.e., if $ABx = \lambda x$, then there exists a vector y such that $BAy = \lambda y$.

2) For a vector $u \in \mathbb{R}^n$, we write $u \otimes u$ to denote the vector in \mathbb{R}^{n^2} where for any $1 \leq i, j \leq n$, $(u \otimes u)_{i+nj} = u_i \cdot u_j$.

a) Show that for any pair of vectors $u, v \in \mathbb{R}^n$,
$$\langle u \otimes u, v \otimes v \rangle = \langle u, v \rangle^2.$$

b) Let $A \in \mathbb{R}^{n \times n}$ be a PSD matrix, and let $B \in \mathbb{R}^{n \times n}$ be the matrix where $B_{i,j} = A_{i,j}^2$. Prove that B is PSD.

Hint: Use part (a) and that any matrix A is PSD iff it can be written as $A = CC^\top$ for some matrix $C \in \mathbb{R}^{n \times k}$, for some integer k.

c) **Extra Credit:** Let $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ be a set of points of norm 1. For $\sigma > 0$, let $G_\sigma \in \mathbb{R}^{n \times n}$ be the Gaussian kernel on P, i.e.,
$$G_\sigma(i, j) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\|p_i - p_j\|^2/2\sigma}.$$

Prove that $G_\sigma \succeq 0$.

3) Let $A \in \mathbb{R}^{n \times n}$. Normally, we need to scan all non-zero entries of A to compute $\|A\|_F^2$. In this problem, we see that if A is PSD then we can approximate $\|A\|_F^2$ in time $O(n \log(1/\delta)/\epsilon^2)$ with probability at least $1 - \delta$. Note that this is sublinear in the number of non-zero entries of A. So, indeed our algorithm does not read all non-zero entries of A.

a) First, assume that all diagonal entries of A are 1, i.e., $A_{i,i} = 1$ for all i. Show that for all $i \neq j$, $A_{i,j} \leq 1$.

Hint: Use the fact that A is PSD iff $A = BB^\top$ for some $B \in \mathbb{R}^{n \times n}$. Note that you are not explicitly given B as part of the input in this problem, but you will use it in the analysis.

b) Still, assume all diagonal entries of A are 1. Show that by uniformly sampling $O(n/\epsilon^2)$ entries of A, we can approximate $\|A\|_F^2$ with a constant probability.

Hint: For $1 \leq i, j \leq n$, let $X = n^2 A_{i,j}$ with probability $1/n^2$. Show that X is an unbiased estimator of $\|A\|_F^2$. Compute the relative variance of X and show how to obtain $1 \pm \epsilon$ approximation of $\|A\|_F^2$.

c) Now, we solve the general case: In this case, we sample $A_{i,j}$ with probability $p_{i,j} = \frac{A_{i,j}}{\sum_{k,l} A_{k,l}}$ and if i,j is sampled we let $X = A_{i,j}^2/p_{i,j}$. Show that X gives an unbiased estimator of $\|A\|_F^2$. Design an algorithm that by sampling $O(n \log(1/\delta)/\epsilon^2)$ coordinates of A gives a multiplicative $1 \pm \epsilon$ approximation of $\|A\|_F^2$ with probability at least $1 - \delta$.

Deadline: Nov 12th in Canvas
4) In this problem we discuss a fast algorithm for approximately estimating the low rank approximation (up to an additive error) with respect to the Frobenius norm.

a) Let $A \in \mathbb{R}^{m \times n}$ and suppose we want to estimate Av for a vector $v \in \mathbb{R}^n$. Here is a randomized algorithm for this task. Choose the i-th column of A, A_i, with probability

$$p_i = \frac{\|A_i\|^2}{\|A\|^2_F}$$

and let $X = A_i v_i / p_i$. Show that $E[X] = Av$. Calculate $\text{Var}(X) = E[\|X\|^2] - \|EX\|^2$.

b) Next, we use a similar idea to approximate A. For $1 \leq i \leq s$ let $X_i = \frac{A_i}{\sqrt{p_i}}$ with probability p_j where $1 \leq j \leq n$. Let $X \in \mathbb{R}^{m \times s}$ and let X_i be the i-th columns of X. Note that $XX^T = \sum_{i=1}^s X_i X_i^T$. Show that

$$EXX^T = AA^T.$$

Show that $E\|XX^T - AA^T\|_F^2 \leq \frac{1}{s}\|A\|_F^4$.

c) **Extra Credit:** Let $X = \sum_{i=1}^s \sigma_i u_i v_i^T$ be the SVD decomposition of X where $\sigma_1 \geq \cdots \geq \sigma_s$. Let U_k be the matrix with columns u_1, \ldots, u_k. So, $U_k U_k^T = \sum_{i=1}^k u_i u_i^T$ is a projection matrix. We want to show that for any such matrix X and U_k,

$$\|A - U_k U_k^T A\|_F^2 \leq \|A - A_k\|_F^2 + 2\sqrt{k}\|A\|_F^2 - XX^T,$$

(3.1)

where A_k is the best rank k approximation of A. Note that if this is true we can simply let $s = O(k/\epsilon^2)$ and then a random X chosen from part (b) would give

$$\|A - U_k U_k^T A\|_F^2 \leq \|A - A_k\|_F^2 + \epsilon\|A\|_F^2.$$

Also, note that the algorithm runs in time $\text{nnz}(A) + O(mk^2/\epsilon^4)$ as we need to compute the SVD of X.

It remains to prove (3.1). First, by part (a) of Problem 1, we have

$$\|A - U_k U_k^T A\|_F^2 \leq \|A\|_F^2 - \|A^T U_k\|_F^2.$$

Show that

$$\|A^T U_k\|_F^2 - \sum_{i=1}^k \sigma_i^2 \leq \sqrt{k}\|AA^T - XX^T\|_F.$$

You can use without proof that

$$\sum_{i=1}^k \sigma_i^2 - \sum_{i=1}^k \sigma_i(A)^2 \leq \sqrt{k}\|AA^T - XX^T\|_F,$$

where $\sigma_i(A)$ is the i-th largest singular value of A. Use the above two equations to conclude (3.1).

d) Use the above algorithm to approximate the Einstein image we used in class. Specify how large s should be to obtain a “good” approximation. Note that you do not need to calculate s based on the bound on part c; instead just choose enough samples until the approximate image is close to the actual image. This is supposed to show that for s much smaller than what the theory suggests you will get a good approximation. Upload the approximate image together with your code.