
CSE 521: Design and Analysis of Algorithms Winter 2017

Problem Set 4
Deadline: Feb 26th (at 12:00PM) in Canvas

1) Prove the following Matrix equations:

a) Let A ∈ Rn×n and let U ∈ Rk×n be a matrix with orthonormal columns U1, . . . , Uk. So, UUT =∑k
i=1 UiU

T
i is a projection matrix. Show that

‖A− UUTA‖2F = ‖A‖2F − ‖UTA‖2F .

b) We say a matrix U ∈ Rn×n is a unitary matrix if all singular values of U are 1. Show that for any
unitary matrix U ,

UUT = I.

Use this to show that unitary matrices are rotation matrices, i.e., for any vector v,

‖Uv‖ = ‖v‖.

2) In this problem we discuss a fast algorithm for approximately estimating the low rank approximation
with respect to the Frobenius norm.

a) Let A ∈ Rm×n and suppose we want to estimate Av for a vector v ∈ Rn. Here is a randomized
algorithm for this task. Choose the i-th column of A, Ai, with probability

pi =
‖Ai‖2

‖A‖2F

and let X = Aivi/pi. Show that E [X] = Av. Calculate Var(X) = E
[
‖X‖2

]
− ‖EX‖2.

b) Next, we use a similar idea to approximate A. For 1 ≤ i ≤ s let Xi =
Aj√
sipj

with probability pj where

1 ≤ j ≤ n. Let X ∈ Rm×s and let Xi be the i-th columns of X. Note that XXT =
∑s

i=1XiX
T
i .

Show that
EXXT = AAT .

Show that E‖XXT −AAT ‖2F ≤ 1
s‖A‖

4
F .

c) Extra Credit: Let X =
∑s

i=1 σiuiv
T
i be the SVD decomposition of X where σ1 ≥ · · · ≥ σs. Let Uk

be the matrix with columns u1, . . . , uk. So, UkU
T
k =

∑k
i=1 uiu

T
i is a projection matrix. We want to

show that for any such matrix X and Uk,

‖A− UkU
T
k A‖2F ≤ ‖A−Ak‖2F + 2

√
k‖AAT −XXT ‖F , (4.1)

where Ak is the best rank k approximation of A. Note that if this is true we can simply let s = O(k/ε2)
and then a random X chosen from part (b) would give

‖A− UkU
T
k A‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F .

Also, note that the algorithm runs in time nnz(A) + O(mk2/ε4) as we need to compute the SVD of
X.

It remains to prove (4.1). First, by part (a) of Problem 1, we have

‖A− UkU
T
k A‖2F ≤ ‖A‖2F − ‖ATUk‖2F .

4-1

http://canvas.uw.edu

4-2 Problem Set 4: Feb 26th (at 12:00PM) in Canvas

Show that ∣∣∣∣∣‖ATUk‖2F −
k∑

i=1

σ2
i

∣∣∣∣∣ ≤ √k‖AAT −XXT ‖F .

You can use without proof that∣∣∣∣∣
k∑

i=1

σ2
i −

k∑
i=1

σi(A)2

∣∣∣∣∣ ≤ √k‖AAT −XXT ‖F ,

where σi(A) is the i-th largest singular value of A. Use the above two equations to conclude (4.1).

3) In this problem we see applications of expander graphs in optimization. In particular, we see that the
maximum cut problem is easy in strong expander graphs. First, we explain the expander mixing lemma
which asserts that expander graphs are very similar to complete graphs.

Theorem 4.1 (Expander Mixing Lemma). Let G be a d-regular graph and 1 = λ1 ≥ λ2 ≥ . . . λn ≥ −1
be the eigenvalues of the normalized adjacency matrix of G, A/d. Let λ∗ = max{λ2, |λn|}. Then, for any
two disjoint sets S, T ⊆ V , ∣∣∣∣|E(S, T)| − d · |S| · |T |

n

∣∣∣∣ ≤ d · λ∗√|S||T |.
Note that d|S||T |/n is the expected number of edges between S, T in a random graph where is an edge
between each pair of vertices i, j with probability d/n. So, the above lemma says that in an expander
graph, for any large enough sets |S|, |T |, then the number of edges between S, T is very close to what you
see in a random graph.

Use the above theorem to design an algorithm for the maximum cut problem that for any d regular graph
returns a set T such that

|E(T, T)| ≥ (1− 4λ∗) max
S
|E(S, S)|.

Note that the performance of such an algorithm may be terrible if λ∗ > 1/4, but in strong expander
graphs, we have λ∗ � 1; for example, in Ramanujan graphs we have λ∗ ≤ 2/

√
d. So the number of edges

cut by the algorithm is very close to optimal solution as d → ∞. It turns out that in random graph
λ∗ ≤ 2/

√
d with high probability. So, it is easy to give a 1 +O(1/

√
d) approximation algorithm for max

cut in most graphs.

4) In this problem you are supposed to implement the spectral partitioning algorithm that we discussed in
class. You are given a giant network, “com-DBLP” input in https://snap.stanford.edu/data/ and you
should find a sparse cut in this network. My code has found a cut of sparsity about 1%. Note that since
the graph is huge you need to carefully store the edges of this graph. You should also use the power
method to find the 2nd smallest eigenvalue of the normalized Laplacian matrix. In the output you should
write the sparsity of the cut that you find and the id of the vertices in the smaller side of the cut. Please
submit your code and the output to Canvas.

5) Extra Credit. In this problem we see applications of expander graphs in coding theory. Error correcting
codes are used in all digital transmission and data storage schemes. Suppose we want to transfer m bits
over a noisy channel. The noise may flip some of the bits; so 0101 may become 1101. Since the transmitter
wants that the receiver correctly receives the message, he needs to send n > m bits encoded such that
the receiver can recover the message even in the presence of noise. For example, a naive way is to send
every bit 3 times; so, 0101 becomes 000111000111. If only 1 bit were flipped in the transmission receiver
can recover the message but even if 2 bits are flipped, e.g., 110111000111 the recover is impossible. This
is a very inefficient coding scheme.

http://canvas.uw.edu
https://snap.stanford.edu/data/

Problem Set 4: Feb 26th (at 12:00PM) in Canvas 4-3

An error correcting code is a mapping C : {0, 1}m → {0, 1}n. Every string in the image of C is called a
codeword. We say a coding scheme is linear, if there is a matrix M ∈ {0, 1}(n−m)×n such that for any
y ∈ {0, 1}n, y is a codeword if and only if

My = 0.

Note that we are doing addition and multiplication in the field F2.

a) Suppose C is a linear code. Construct a matrix A ∈ {0, 1}n×m such that for any x ∈ {0, 1}m, Ax is a
code word and that for any distinct x, y ∈ {0, 1}m, Ax 6= Ay.

The rate of a code C is defined as r = m/n. Codes of higher rate are more efficient; here we will be
interested in designing codes with r being an absolute constant bounded away from 0. The Hamming
distance between two codewords c1, c2 is the number of bits that they differ, ‖c1 − c2‖1. The minimum
distance of a code is minc1,c2 ‖c1 − c2‖1.

b) Show that the minimum distance of a linear code is the minimum Hamming weight of its codewords,
i.e., minc ‖c‖1.

Note that if C has distance d, then it is possible to decode a message if less than d/2 of the bits are
flipped. The minimum relative distance of C is δ = 1

n min ‖c1 − c2‖1. So, ideally, we would like to have
codes with constant minimum relative distance; in other words, we would like to say even if a constant
fraction of the bits are flipped still one can recover the original message.

Next, we describe an error correcting code scheme based on bipartite expander graphs with constant rate
and constant minimum relative distance. A (nL, nR, D, γ, α) expander is a bipartite graph G(L ∪ R,E)
such that |L| = nL, |R| = nR and every vertex of L has degree D such that for any set S ⊆ L of size
|S| ≤ γnL,

N(S) ≥ α|S|.

In the above, N(S) ⊆ R is the number of neighbors of vertices of S. One can generate the above family
of bipartite expanders using ideas similar to Problem 1. We use the following theorem without proving
it.

Theorem 4.2. For any ε > 0 and m ≤ n there exists γ > 0 and D ≥ 1 such that a (n,m,D, γ,D(1− ε))-
expander exists. Additionally, D = Θ(log(nL/nR)/ε) and γnL = Θ(εnR/D).

Now, we describe how to construct the matrix M . We start with a (nL, nR, D, γ,D(1 − ε)) expander
for nL = n, nR = n −m. For our calculations it is enough to let n = 2m. We name the vertices of L,
{1, 2, . . . , n}; so each bit of a codeword corresponds to a vertex in L. We let M ∈ {0, 1}(n−m)×n be the
Tutte matrix corresponding to this graph, i.e., Mi,j = 1 if and only if the i-th vertex in R is connected to
the j-th vertex in L. Observe that by construction this code has rate 1/2. Next, we see that δ is bounded
away from 0.

c) For a set S ⊆ L, let U(S) be the set of unique neighbors of S, i.e., each vertex in U(S) is connected
to exactly one vertex of S. Show that for any S ⊆ L such that |S| ≥ γn,

|U(S)| ≥ D(1− 2ε)|S|.

d) Show that if ε < 1/2 the minimum relative distance of C is at least γn.

The decoding algorithm is simple to describe but we will not describe it here.

http://canvas.uw.edu

