
CSE 521: Design and Analysis of Algorithms Winter 2017

Midterm
Deadline: Feb 10th (at 12:00PM) in Canvas

In this assignment you are not allowed to collaborate. But, you may contact the instructor or TA for hints.
We will study locally sensitive hash functions in more depth. We also have one question related to the
Shwartz-Zippel Lemma.

1) Let a, b be arbitrary real numbers. Fix w > 0 and let s ∈ [0, w) chosen uniformly at random. Show that

P
[⌊
a− s
w

⌋
=

⌊
b− s
w

⌋]
= max

{
0, 1− |a− b|

w

}
.

Recall that for any real number c, bcc is the largest integer which is at most c.

Hint: Start with the case where a = 0.

2) In this problem we design an LSH for points in Rd, with the `1 distance, i.e.

d(p, q) =
∑
i

|pi − qi|.

Define a class of hash functions as follows: Fix w � r. Each hash function is defined via a choice of
d independently selected random real numbers s1, s2, . . . , sd, each uniform in [0, w). The hash function
associated with this random set of choices is

h(x1, . . . , xd) =

(⌊
x1 − s1
w

⌋
,

⌊
x2 − s2
w

⌋
, . . . ,

⌊
xd − sd
w

⌋)
.

Let αi = |pi − qi|. What is the probability that h(p) = h(q) in terms of the αi values? For what values
of p1 and p2 is this family of functions (r, c · r, p1, p2)-sensitive? You can do your calculations assuming
that you are in a regime where 1− x is well approximated by e−x.

3) In this problem we design an LSH for points in Rd with the `2 distance function,

d(p, q) = ‖p− q‖2 =

√∑
i

(pi − qi)2.

Let w � r, and let s be uniformly distributed in [0, w). Let g be a d-dimensional Gaussian vector, i.e., for
all 1 ≤ i ≤ d, gi ∼ N (0, 1) and all coordinates of g are chosen independently. Consider the hash function

h(p) =

⌊
〈g, p〉 − s

w

⌋
a) Show that for any two points p, q, 〈g, p〉 − 〈g, q〉 is distributed as a normal random variable. What

is the mean and variance of this random variable? In this part you can use the fact that any linear
combination of independent normal random variables is also a normal random variable.

b) Use Problem (1) to estimate the probability that h(p) = h(q). Note that this probability is over
the randomness of g and s. In this part you can use the fact that for a random variable X ∼
N (0, σ2), E [|X|] = σ

√
2/π. To make calculations simple, assume that w is large enough such that

P [|〈g, p〉 − 〈g, q〉| > w] = 0.

2-1

http://canvas.uw.edu

2-2 Midterm

c) Use the statement of part (b) to determine for what values of p1, p2, is this family (r, c · r, p1, p2)
sensitive?

4) In this problem we design an algorithm to estimate the size of the largest matching of a bipartite graph.
Recall that for a matrix A, rank(A) is the number of linearly independent columns of A; it is also the
same as the number of linearly independent rows of A. It turns out that for any matrix A ∈ Rn×n,
det(A) 6= 0 if and only if rank(A) = n. Let G = (X,Y,E) be a given bipartite graph. Using the above
terminology, we can rewrite the algorithm that tests whether G has a perfect matching as follows: For
each edge (xi, yj) of G, choose Ai,j uniformly and independently from the set {0, 1, . . . , n2}, and let the
rest of entries of A be 0. Return yes if rank(A) = n and no otherwise. Since det(A) is a polynomial
of degree n, you will use the Shwartz-Zippel Lemma to show this algorithm succeeds with probability
1− 1/n.

a) Let A be the following matrix: For each nonadjacent pair xi, yj , let Ai,j = 0; choose the rest of the
entries of A arbitrarily. Show that if rank(A) = k, then G has a matching of size at least k.

b) Now, suppose for any edge (xi, yj) we choose Ai,j uniformly and independently from {0, 1, . . . , n2},
and we let the rest of the entries be 0. Show that with high probability, rank(A) is equal to the size
of the largest matching of G.

5) Extra Credit. In this problem you are supposed to implement the NNS algorithm for the hamming
distance. You are given n points P ⊆ {0, 1}d that you are supposed to preprocess and store based on the
algorithm that we discussed in class. Then, you will be given t query points; for each query point you
need to find a point at distance no more than twice the closest point.

In the input file lsh.in you are given n, d, t in this order. The input is followed by points of P , the i+ 1-st
row of the input is contains the i-th point of P . Then, the input is followed by query points (so the
n+ 1 + i-th row of the input has the i-th query point). In the i-th line of the output, write the index of
the point P that is closest to the i-th query point. Please submit your code together with the output to
Canvas.

lsh.in

