
CSE 521: Design and Analysis of Algorithms I Winter 2017

Lecture 4: Hashing and Streaming Algorithms
Lecturer: Shayan Oveis Gharan 01/18/2017 Scribe: Yuqing Ai

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

At the end of the previous lecture, we introduced the basic notions of hashing and saw some of its applications.
In this lecture, we are going to study hashing in more detail.

4.1 The Problem of Hashing

Let U = {1, 2, ..., |U|} be a large universe of numbers, let X1, ..., Xn ∈ {1, 2, ..., |U|} be n input numbers
in such a universe where n � |U|. Recall from the last lecture, our goal is to construct a family of hash
functions H, where every function in this family maps from U to {1, 2, ..., N}. We want the probability of
collision P

h∼H
[∃i, j ∈ {1, ..., n}, i 6= j, h(Xi) = h(Xj)] to be small. In the mean time, we would like to use as

little space as possible.

Recall that in the example of birthday paradox, where we have n people and N days in a year, the probability
that two people were born in the same day is small when N � n2. Therefore, if we map the n input numbers
uniformly to {1, 2, ..., cn2} for some large enough constant c, then by an analysis similar to what we did in
birthday paradox, we can show that the probability of collision is small. However, the problem here is
that to record the uniform hash function, we need |U| logN bits, which is too big. Therefore, instead of
choosing uniformly from all the possible mappings, we choose uniformly from a smaller set of functions. This
motivates us to use hash functions with limited independence.

4.2 Limited Independence

Definition 4.1 (One-way Independence). Let H be a family of hash functions, we say H is one-way inde-
pendent if for all x1 ∈ U and for all a1 ∈ [N], we have

P
h∼H

[h(x1) = a1] =
1

N
.

Note that the above definition of one-way independence is not enough for a good family of hash functions.
The family of constant functions {h1, h2, ..., hN} where hi(x) = i for every x ∈ U is one-way independent.
Constant functions give us the largest amount of collisions we can imagine. However, when we take one step
further and use a pairwise independent family of functions, we are able to achieve small collision probability.

Definition 4.2 (Pairwise Independence). Let H be a family of hash functions, we say H is pairwise inde-
pendent if for all distinct x1, x2 ∈ U and for all a1, a2 ∈ [N], we have

P
h∼H

[h(x1) = a1, h(x2) = a2] =
1

N2
.

4-1

4-2 Lecture 4: Hashing and Streaming Algorithms

In fact, in the case of our problem, hash function families with the below definition of approximate pairwise
independence property is sufficient.

Definition 4.3 (Approximate Pairwise Independence). Let H be a family of hash functions, we say H is
α-approximate pairwise independent if for all distinct x1, x2 ∈ U and for all a1, a2 ∈ [N], we have

P
h∼H

[h(x1) = a1, h(x2) = a2] ≤ α

N2
.

Before proving that pairwise independence is sufficient for a good family of hash functions, we remark
that we can extend the definitions 4.1 and 4.2 to k-wise independence. Although pairwise independence is
already sufficient for our application today, k-wise independent hash functions are very important objects in
computer science, and thus have found a lot of applications elsewhere.

Definition 4.4 (k-wise Independence). Let H be a family of hash functions, we say H is k-wise independent
if for all distinct x1, x2, ...xk ∈ U and for all a1, a2, ..., ak ∈ [N], we have

P
h∼H

[h(x1) = a1, h(x2) = a2, ..., h(xk) = ak] =
1

Nk
.

4.3 Birthday Paradox Revisit

Now, let us revisit the analysis of the birthday paradox. We will see that the actual property that we need
is approximate pairwise independence instead of mutual independence.

Similar to the analysis of the birthday paradox, we define Yij to be the indicator random variables that

h(Xi) = h(Xj), and let Y =
∑n−1
i=1

∑n
j=i+1 Yij . Suppose that H is an α-approximate pairwise independent

hash function family, then for every distinct i, j ∈ [n]

E[Yij] = P
h∼H

[h(Xi) = h(Xj)] =
∑
a∈[N]

P
h∼H

[h(Xi) = a, h(Xj) = a] ≤ α

N2
·N =

α

N
.

Therefore

E[Y] =

n−1∑
i=1

n∑
j=i+1

E[Yij] ≤
(
n

2

)
α/N.

So if n2 < N/α, then by Markov’s inequality, we have

P
h∼H

[∀ distinct i, j ∈ {1, ..., n}, h(Xi) 6= h(Xj)] = P[Y = 0] ≥ 1

2

The above analysis shows that a family of hash functions with the property of α-approximate pair indepen-
dence for some constant α would be suffice for our purpose.

4.4 Double Hashing

The material of this section follows from the work of Fredman et al. []. As we will see in the next section,
to store the the (approximate) pairwise independence hash functions, we will need O(log n) space. One
plausible hashing scheme would be storing a linked list for each of the possible images of our hash function.
If we use this hashing scheme directly, we will also need O(n2) space to store the starting nodes of the linked
lists of the O(n2) possible images. Therefore, it requires O(n2) space overall to implement such a hashing

Lecture 4: Hashing and Streaming Algorithms 4-3

scheme, which is not affordable when n is too large. In fact, we can save more memory by using the following
two layers hashing scheme.

Instead of choosing N = Θ(n2), we choose N = Θ(n) and use our hashing algorithm to map the inputs to
N buckets. We still maintain a link list for each of the buckets. For this choice of value of N , we should
not expect no collision happen. However, we can bound the number of pairs of inputs elements that map to
the same bucket. Then, by hashing elements in the same bucket in a second tier we avoid collision with a
constant probability.

To analyze the above scheme, we use Zi to denote the number of elements that map to the i-th location.
Then, when we do the second layer of hashing, according to Section 4.3, we should map the elements in the
i-th bucket to [αZ2

i] location. On the other hand, by the proof of Section 4.3,

E
N∑
i=1

Z2
i = 2

n−1∑
i=1

n∑
j=i+1

EYij + n =
2α
(
n
2

)
N

+ n = O(αn).

Therefore, the expected amount of memory we will use is O(n).

4.5 Construction of Pairwise Independent Hash Function

Let p be a prime so that |U | ≤ p ≤ 2|U |. Let variables a and b both be uniformly chosen from {0, ..., p− 1}
such that a 6= 0. We show that the family of functions fa,b(x) = ax + b mod p is pairwise independent.
Note that these functions map [p]→ [p]. Later we see that using a mod operation we can construct pairwise
independent hash functions that map [p]→ [N].

Claim 4.5. For all x, y ∈ {0, ..., p − 1} such that x 6= y, and for all s, t ∈ {0, ..., p − 1} such that s 6= t, we
have

P
a,b

[fa,b(x) = s, fa,b(y) = t] =
1

p(p− 1)

Proof. When fa,b(x) = s and fa,b(y) = t, we have ax + b ≡ s mod p, and ay + b ≡ t mod p. Subtracting
one from the other, we get

a(x− y) ≡ s− t mod p.

Since p is a prime number, for every number k ∈ {1, ..., p− 1}, there is a unique (modular) inverse k−1 of k
so that kk−1 ≡ 1 mod p. We do not discuss the algorithm for finding modular inverse, we refer students to
https://en.wikipedia.org/wiki/Modular multiplicative inverse for details.

Since x 6= y, x− y has a modular inverse. So, we can write solve the above system of modular equations for
a and b; in particular, we have

a ≡ (s− t)(x− y)−1 mod p.

Note that since s 6= t, we have a 6= 0 in above as desired. Furthermore,

b ≡ s− ax mod p

The above analysis shows that for x, y, s, t given in the statement of the above claim, there exists a unique
solution (a, b) so that fa,b(x) = s and fa,b(y) = t. Since there are p(p − 1) possible values for (a, b) to take
and (a, b) is chosen uniformly from them, the claim follows.

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse

4-4 Lecture 4: Hashing and Streaming Algorithms

Now, we choose the family of hash functions to be H = {ha,b} where

ha,b(x) = fa,b(x) mod N.

Note that to store this function in memory, we only have to store a and b, which takes only O(log p) =
O(log |U |) many bits. For the particular application to Hashing universe U , we can use another idea to
reduce the memory size to O(log n). Please refere to [, Lem 2] for details.

Now, we show that H is the family of hash functions with 2-approximate pairwise independence property.

Claim 4.6. For all x, y ∈ U so that x 6= y, we have

P
a,b

[ha,b(x) = ha,b(y)] ≤ 1

N
.

Proof. For all x, y ∈ U so that x 6= y, ha,b(x) = ha,b(y) if and only if fa,b(x) ≡ fa,b(y) mod N . Thus, by
Claim 4.5

P
a,b

[ha,b(x) = ha,b(y)] = P
a,b

[fa,b(x) ≡ fa,b(y) mod N]

=
∑

0≤s,t<p:s6=t

P [fa,b(x) = s, fa,b(y) = t] I [s ≡ t mod N]

=
∑

0≤s,t<p:s6=t

I [s ≡ t mod N]

p(p− 1)

≤ 1

p(p− 1)
· p
N

=
1

N

The last inequality follows by the fact that for any x ∈ [p] there are at most p/n numbers t such that s 6= t
and s ≡ t mod N .

Note that the family of functions that we construct above is approximately pairwise independent but that
is enough for all interesting applications.

We remark that we can extend the above construction and obtain a family of hash functions that is k-wise
independent. For some prime number p, consider the family of hash functions

fa0,...,ak−1
(x) = ak−1x

k−1 + ...+ a1x+ a0,

where a0, ..., ak−1 are uniformly chosen in {0, 1, ..., p− 1}. Similar to the invertible argument we used above,
the proof that this construction is k-wise independent follows from the fact that the Vandermonde matrix

1 1 · · · 1
x1 x2 · · · xk
x21 x22 · · · x2k
...

...
. . .

...

xk−11 xk−12 · · · xk−1k


is invertible for distinct x1, ..., xk. So, in general we can store a k-wise independent hash function with only
O(k log |U |) amount of memory.

REFERENCES 4-5

4.6 Introduction to Streaming Algorithms

As an application of hashing, we are going to discuss streaming algorithms in the next a couple of lectures.
Streaming algorithms has become a hot topic in theoretical computer science nowadays because of the
massive amount of data we have to process. Typically, we do not have enough space to store the entire data.
Instead, we process the data in a streaming fashion, and sketch the information we want from the data by
a few passes.

We will talk about algorithms for F0 and F2 estimation. Those are classic results appeared in the first paper
of streaming algorithms []. The problem is as follows.

Let U = {1, ..., |U|} be a large universe of numbers, and let X1, ..., Xn be a sequence of numbers in U . Let

fi =
∑n
j=1 I[Xj = i] be the number of times i appears in the sequence. For 0 ≤ k ≤ ∞, we let Fk =

∑|U|
i=1 f

k
i ,

where we define 00 = 0. The interesting values of k for us are

• When k = 0, F0 counts the number of distinct elements in the sequence.

• When k = 2, F2 is the second moment of the vector (f1, ..., f|U|).

• When k = ∞, F∞ corresponds to the number of times the most frequent number shows up in the
sequence.

In the next lecture, we are going to prove the following theorem.

Theorem 4.7. With (1− δ) probability and using O(log |U|+logn
ε2 · log 1

δ) space, we can give a (1− ε) approx-
imation of F0 and F2 (in the worst case).

We remark that allowing randomness and approximated solution is crucial to us. There is no hope to use
a deterministic or exact algorithm to achieve logarithmic amount of space. Please see Tim Roughgarden’s
Lecture notes for more details.

References

[] M. L. Fredman, J. Komlós, and E. Szemerédi. “Storing a Sparse Table with 0(1) Worst Case Access
Time”. In: J. ACM 31.3 (June 1984), pp. 538–544 (cit. on pp. 4-2, 4-4).

[] N. Alon, Y. Matias, and M. Szegedy. “The space complexity of approximating the frequency moments”.
In: STOC. ACM. 1996, pp. 20–29 (cit. on p. 4-5).

http://theory.stanford.edu/~tim/w15/l/w15.pdf

	The Problem of Hashing
	Limited Independence
	Birthday Paradox Revisit
	Double Hashing
	Construction of Pairwise Independent Hash Function
	Introduction to Streaming Algorithms

