
CSE 521: Design and Analysis of Algorithms I Winter 2017

Lecture 15: LP Applications – Linear Modeling, Planning, Optimization
Lecturer: Shayan Oveis Gharan 03/06/17 Scribe: Rahul Nadkarni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we discuss several applications of linear programming. We start by discussing applications in
linear modeling, then we will go to applications in planning and optimization.

15.1 Linear Modeling

In this part we discuss the idea of linear modeling. This idea has been used in a number of areas of computer
science and finance. The rough idea is to disregard correlations between the parameters of a given problem
and formulate a linear model for our problem at hand. For many real-world problems this gives a very good
approximation of the optimum solution of the problem which involves the underlying correlations.

15.1.1 Example: Diet Problem

Suppose we have the problem of designing a diet that consists of certain quantities of various food groups,
with quantities chosen to maximize some desired function of the food chosen while also satisfying constraints
that are functions of properties of the food. The food groups are (v)eggies, (m)eat, (f)ruits, and (d)airy,
with each food having the known characteristics of (p)rice, number of (c)alories, and amount of (h)appiness
per unit of food (details in Table 15.1.1).

veggies meat fruits dairy
price pv pm pf pd

calories cv cm cf cd
happiness hv hm hf hd

Table 15.1: Constant-valued attributes for each food group.

In particular, we are assuming that one gram of veggies has price pv, cv calories and gives us hv happiness.
Let xv, xm, xf , and xd be the variables indicating the amount of grams from each of the four group that
we should consume in a single day. Our objective is to choose xv, xm, xf , xd to maximize overall happiness,
under the constraint that the total price must be less than 20 and the total number of calories must be less
than 1500. We can formulate this as a linear program by writing

maximize xv · hv + xm · hm + xf · hf + xd · hd
subject to xv · pv + xm · pm + xf · pf + xd · pd ≤ 20

xv · cv + xm · cm + xf · cf + xd · cd ≤ 1500

(15.1)

Note that here we avoid correlations between the four categories in our model and we consider a linear
model. This in particular means that our happiness from 100 grams of meat is independent of the dressing
and other ingrediants of the food.

15-1

15-2 Lecture 15: LP Applications – Linear Modeling, Planning, Optimization

In addition, observe that the solution of the above program is not necessarily integral; for example in the
optimal solution we may have to eat 2.5 grams of meat in a single day. We consider that being acceptable
in our model.

15.1.2 Example: Support Vector Machine

The Support Vector Machine (SVM) is a classical machine learning model for linearly separating data points
that belong to difference classes. Suppose we have m points x1, . . . , xm ∈ Rd labeled “+” and n points
y1, . . . , yn ∈ Rd labeled “–”. We want to find a linear separator (i.e. a hyperplane in Rd) given by an
orthogonal vector w and an offset b, such that all of the points x1, . . . , xm fall on one side of the separator
(given by the constraint that 〈w, xi〉+ b ≥ +1, i = 1, . . . ,m) and all of the points y1, . . . , yn fall on the other
side (given by 〈w, yj〉+ b ≤ −1, j = 1, . . . , n). An example of such a set of points and a linear separator is
given in Figure 15.1.2.

Figure 15.1: Example of data points and linear separator.

It turns out that this corresponds to a simple linear programming problem with aforementioned constraints.

However, in many real-world cases, a set of points may not be linearly separable. In this case, we can allow
some amount of error for each point, defined as εi for point xi and δj for point yj . We can now formulate
the problem of finding the optimal values of w and b as an optimization problem, where we minimize the
total error subject to the linear inequality constraints defined above, augmented by the error terms. This
problem can be written as

minimize
w,b,ε,δ

m∑
i=1

εi +

n∑
j=1

δj

subject to 〈w, xi〉+ b ≥ +1− εi, i = 1, . . . ,m

〈w, yj〉+ b ≤ −1 + δj , j = 1, . . . , n

εi, δj ≥ 0 ∀i, j

(15.2)

Lecture 15: LP Applications – Linear Modeling, Planning, Optimization 15-3

15.2 Planning/Decision-making

Consider the decision-making problem of choosing whether to pursue a Ph.D. after college or take a job in
industry. Suppose we have a distribution X1 of the potential salaries when obtaining a job after having done
a Ph.D., and a distribution X2 for salaries without having done a Ph.D. Suppose there is also a probability
p of actually finishing a Ph.D. once it is started. We can reformulate the problem of deciding whether or not
to get a Ph.D. as choosing the action that maximizes our expected gain: in this case, an industry job would
lead to an expected gain of EX1, whereas pursuing a Ph.D. gives an expected gain of p ·EX2 + (1− p) ·EX1

(where the second term arises from the fact that we can still get an industry job even without completing
the Ph.D.). If it is the case that EX1 < p · EX2 + (1− p) · EX1, then our expected gain of getting a Ph.D.
is higher than getting an industry job, and going to grad school would be the optimal decision.

Markov Decision Processes Expanding on the previous section, let us define a model that consists of
a set of states and actions, where each action takes us from one state to another and gains some reward.
Specifically, if we are in state i and take action a, then we will go to state j with probability Pa(i, j) and get
a reward of Ra(i, j). This setup defines a Markov Decision Process (MDP). Given a probability distribution
for each pair of state/action, as well an associated reward function, we want to find an optimal policy that
will maximize the cumulative reward.

There are two main directions to model the objective function:

Finite Horizon We run our MDP for a finite number of steps T , with the total reward defined as the sum
of rewards across all time steps.

Infinite Horizon We run our MDP for an infinite number of steps, and the total reward is a discounted
version of the sum of rewards across all time steps, such that rewards gained further into the future
are discounted more.

15.2.1 Finite Horizon MDPs

Suppose we run our MDP for T steps and the rewards is the collective sum of the rewards for all steps. We
can find the optimal policy by dynamic programming.

For an state i and time step 0 ≤ t ≤ T , let Vt(i), be the expected reward of an MDP that starts from state i
at timestep t to time T . Assuming we know the value of Vt+1(j) for all states j, we can define Vt recursively
by choosing the action among all possible actions that maximizes our expected reward.

Firstly, observe that for any state i,
VT (i) = 0.

This is because at time T we stop the chain so there is no more rewards to be collected. For 0 ≤ t < T and
state i we can write,

Vt(i) = max
a

∑
j

Pa(i, j) (Ra(i, j) + Vt+1(j)) = F (Vt+1)(i) (15.3)

Note that for an action a, the optimal expected reward if we take action a at state i at time t is∑
j

Pa(i, j)(Ra(i, j) + Vt+1(j)).

Therefore, the optimal expected reward out of state i at time t is obtained by an action a the maximizes the
above quantity (see (15.3)).

15-4 Lecture 15: LP Applications – Linear Modeling, Planning, Optimization

The function F that we defined in (15.3) is called the Bellman operator. Using this function, we can
recursively compute Vt for all states and all time steps T − 1, T − 2, . . . , 1, 0 in that order, relying on the fact
that VT = 0. In other words, we apply the Bellman operator, F , T times, to obtain V0,

V0 = F (F (. . . F (︸ ︷︷ ︸
T times

0))) (15.4)

Where we used that VT = 0.

To determine the optimal policy, we can simply replace the max on the right-hand side with an argmax.
That is if we are at state i at time t we choose an action a which maximizes

∑
j Pa(i, j)(Ra(i, j) + Vt+1(j)).

The above algorithm takes (computation) time O(Tn2|A|) to calculate V0 assuming that the chain has a
total of n states and |A| actions. Observe that this grows linearly with T , which is not ideal as computing
all values for a very long sequence of steps would be computationally expensive.

15.2.2 Infinite Horizon

In this case, we assume the MDP runs for T = ∞ steps, and our total reward is now discounted by a rate
γ < 1. Specifically, for every time step in the future that a reward is gained, it is multiplied by a factor
of γ, so that a reward gained t steps into the future is scaled by γt. This can be thought of as adjusting
for inflation, since rewards gained in the future are not worth as much as a reward gained at the current
time step. Now, observe that since γ < 1 the collective rewards is always finite. A natural approach is to
reduce this problem to the finite horizon case; intuitively by time t ≥ 10 logn

1−γ the discount is so huge that
the collective reward is negligible from that time on. So, we just need to solve the finite horizon case for
T = Õ)((1 − γ)−1). Unfortunately for γ very close to 1, T is very large, and the algorithm is impractical.
So, our idea is to use linear programming to find the optimal policy.

Firstly, suppose we apply discounting to the Finite Horizon case; then, we can write the corresponding
Bellman operator as follows:

Vt(i) = max
a

∑
j

Pa(i, j) [Ra(i, j) + γVt+1(j)] = Fγ(Vt+1)(i) (15.5)

In other words, the optimal policy can be obtained by applying the Fγ operator an infinite number of times
on the zero vector.

Here is the important observation about the optimal policy in the infinite Horizon case. Let V ∗t (i) be the
optimal expected reward when we start at state i at time t. We claim that for all i, t, V ∗t (i) = V ∗t+1(i). This
is because no matter when we start the chain, we will always run for an infinite number of steps. It follows
from this observation that the optimal reward, V ∗, is constant across all times; furthermore, for each state
i (and any time t) the optimum action is an action a where

V ∗(i) =
∑
j

Pa(i, j)(Ra(i, j) + γV ∗(j)).

Having this in mind we claim that the following linear program gives the optimum expected reward at any
state i.

minimize
V

∑
i

V (i)

subject to V ≥ Fγ(V)

(15.6)

Lecture 15: LP Applications – Linear Modeling, Planning, Optimization 15-5

In the above program, the constraint V ≥ Fγ(V) is indeed a vector constraint; so in particular, for any state
i we have a constraint

V (i) ≥ max
a

∑
j

Pa(i, j) [Ra(i, j) + γV (j)] .

We prove the following theorem

Theorem 15.1. The optimal solution of (15.6) gives the expected rewards of the optimal policy.

Before, proving this theorem we will prove two facts about the feasible solutions of this linear program.

Fact 15.2. The optimal solution V ∗ is a feasible solution of (15.6), i.e. V ∗ ≥ Fγ(V ∗)

Proof. If V ∗(i) < Fγ(V ∗)(i) for some state i, then we choose an action at state i which gives a higher expected
reward, but this means that V ∗(i) was not the optimal expected reward which is a contradiction.

Fact 15.3. If U ≥ V , then Fγ(U) ≥ Fγ(V)

Proof. Based on its definition, Fγ is a monotone operator. This means that if the value of V is increased for
every state i, Fγ(V) can only increase in value. Since U ≥ V element-wise for every state, this implies that
Fγ(U) ≥ Fγ(V).

Using these two facts, we can now prove Theorem 15.1:

Proof of Theorem 15.1. Let V be a feasible solution to the linear program given in (15.6), so that V ≥ Fγ(V).
By Fact 15.3, we have

Fγ(V) ≥ Fγ(Fγ(V))

By another application of Fact 15.3 to the above inequality we have

Fγ(Fγ(V)) ≥ Fγ(Fγ(Fγ(V))).

Following this line of reasoning we get,

V ≥ Fγ(V) ≥ Fγ(Fγ(V)) ≥ · · · ≥ F∞γ (V) = V ∗

This means that V ≥ V ∗. By Fact 1, we already know that V ∗ is a feasible solution. Therefore, the optimal
value of the linear program would be to set V = V ∗, which means that our optimal solution gives the
expected rewards of the optimal policy.

15.3 Optimization

Consider an optimization problem where we are trying to find a solution with minimum cost among a set of
feasible solutions. We say an algorithm, ALG, gives an α-approximation for the problem if for any possible
input to the problem, we have

cost(ALG)

cost(OPT)
≤ α (15.7)

Here, OPT denotes the optimum solution to the problem.

To prove that a given algorithm is an α-approximation, it is sufficient to find a lower-bound for cost(OPT),
and then prove that the ratio between cost(ALG) and this lower-bound for any input is upper-bounded by
α.

15-6 Lecture 15: LP Applications – Linear Modeling, Planning, Optimization

15.3.1 Example: Vertex Cover

Here, we give an application of linear programming in designing an approximation algorithm for a graph
problem called vertex cover. We will design a 2-approximation algorithm. This is the best known result
for the vertex cover problem. It is a fundamental open problem to beat the factor 2 approximation for the
vertex cover problem. In the next lecture we will discuss a generalization of vertex cover called the set cover
problem and we see some applications.

Given a graph G = (V,E), we want to find a set S ⊂ V such that every edge in E is incident to at least
one vertex in S. Obviously, we can let S = V . But, here among all such sets S we want to choose a one of
minimal cost, where cost(S) is defined as

∑
i∈S ci if every vertex i has associated cost ci, and |S| if vertices

do not have any cost.

In the first step we write a (integer) program which characterizes the optimum solution. Then, we use this
program to give a lower bound on the optimum solution. We define this problem with a set of variables
xi ∀ i ∈ V , where xi is defined as

xi =

{
1 i ∈ S
0 i /∈ S

(15.8)

Our constraint that every edge must be incident to at least one vertex in S can be written as xi + xj ≥
1 ∀ i ∼ j ∈ E. So, the question is to find values for all xi’s that minimize the cost of the set S subject to the
aforementioned constraint. This can be defined as the following optimization problem

minimize
x

∑
i∈V

cixi

subject to xi + xj ≥ 1, ∀ i ∼ j ∈ E
xi ∈ {0, 1}, ∀ i ∈ V

(15.9)

Observe that the optimum solution of the above program is exactly equal to the optimum set cover. Note
that this is not a linear program, since we have that xi ∈ {0, 1} for every vertex i, rather than allowing xi
to be a continuous-valued variable.

We can relax the above (integer) program by replacing the integer constraint with the constraint that
0 ≤ xi ≤ 1 ∀ i ∈ V . This turns the problem into a linear program. Since this is optimizing over a set of
xi’s that includes the optimum set cover, the optimal value of this linear program will be less than or equal
to the optimal value of the set cover problem, i.e. OPT LP ≤ OPT. The resulting linear program can be
written as

min
∑
i∈V

cixi

subject to xi + xj ≥ 1, ∀ i ∼ j ∈ E
0 ≤ xi ≤ 1, ∀ i ∈ V

(15.10)

Suppose we have an optimal solution of the above program. We want to round this solution into a set cover
such that the cost of the cover that we produce is within a small factor of the cost of the LP solution.

The idea is to ue a simple thresholding idea: For each vertex i, if xi ≥ 0.5, then we add i to S, otherwise we
don’t include i in S.

Claim 15.4. For any solution x of linear program (15.10), the resulting set S, is a vertex cover

Proof. For a feasible solution x to the linear program, we know that xi + xj ≥ 1 ∀ i ∼ j ∈ E. This means

Lecture 15: LP Applications – Linear Modeling, Planning, Optimization 15-7

that for every edge i ∼ j, at least one of xi, xj is at least 0.5.Therefore, for any edge i ∼ j at least one of i, j
is in S. So, S is a vertex cover.

Claim 15.5. For any solution x of linear program (15.10) the resulting set S satisfies∑
i∈S

ci ≤ 2
∑
i

cixi = OPT LP.

This implies that the above algorithm is a 2 approximation for the vertex cover problem.

Proof. ∑
i∈S

ci =
∑

i:xi≥0.5

ci ≤
∑

i:xi≥0.5

2cixi ≤
∑
i

cixi.

Note that in the worst case xi = 0.5 for all vertices i and the above claim is tight.

	Linear Modeling
	Example: Diet Problem
	Example: Support Vector Machine

	Planning/Decision-making
	Finite Horizon MDPs
	Infinite Horizon

	Optimization
	Example: Vertex Cover

