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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

13.1 Aside: Graph Visualization With Eigenvectors

At the beginning of class we ran several simulations to show applications of spectral embedding of a graph;
in particular we showed a 2-dimensional mapping of a graph G where vertex i is mapped to the points (xi, yi)
where x, y represent the 2nd and 3rd eigenvectors of normalized Laplacian of G. vThere are theorems that
can characterize the visualizations produced in this manner, for planar graphs. Note that while planar
graphs are frequently described in terms of being those which can be drawn on a single plane with no
edges intersections, it is not obvious how to produce this mapping; visualizing with the second and third
eigenvectors can be a way to accomplish this.)

13.2 Continuation of Proof of Bounds on Power Method

Recall that in the last lecture, we were in the process of proving the following theorem:

Theorem 13.1. For all k > 0 and ε > 0, if y is the vector returned by the power method on PSD matrix
M and λ1 is the largest eigenvalue of matrix M , then with constant probability

yTMy

yT y
≥ (1− ε)λ1

1 + 10n(1− ε)2k
.

Recall that to generate y, we let x ∈ Rn be a random Gaussian vector, i.e., for all i, we sample xi ∼ N (0, 1)
independent of all other coordinates. Then, y = Mkx in the above theorem.

Continuing the proof from before, we will argue that it will suffice to prove three claims related to the power
method in order to complete the proof, which we will now state:

Claim 13.2. Let x be a random Gaussian vector. For any unit norm vector v, with constant probability,
|〈x, v〉| ≥ 1/2.

We will invoke the above claim for v = v1, the first eigenvector of M . Note that by a constant probability
in the above claim we mean a number which is independent of n. That number only depends on the density
function of the standard normal distribution, and it does not grow as n→∞.

We proved a very similar claim in the midterm; we have sketched the proof of this claim in the notes of last
lecture.

Claim 13.3. For any standard normal random vector x ∈ Rn,

P
[
‖x‖2 ≥ 2n

]
≤ e−n

8 .
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We sketched the proof of this claim in the notes of the last lecture. Just note that E
[
‖x‖2

]
= n; so the

above theorem simply follows by the concentration of sum of normal random variables.

Next, we prove the third claim.

Claim 13.4. For any vector x ∈ Rn, if y = Mkx and ε > 0, then

yTMy

yT y
≥ (1− ε)λ1

1 + ‖x‖2
〈x,v1〉2 (1− ε)2k

where M is PSD, λ1 is the largest eigenvalue of M , and v1 is the corresponding eigenvector.

Putting the above three claims together we can prove Theorem 13.1 As the form of the third claim suggests,

we just need to use the preceding two claims to lower bound ‖x‖2
〈x,v1〉2 . Namely, it suffices to show that

‖x‖2
〈x,v1〉2 ≤ O(n) with constant probability. First, of all by Claim 13.2, |〈x, v1〉| ≥ 1/2 with constant probability

and by Claim 13.3, ‖x‖2 ≤ 2n with a very high probability probability. Therefore, by union bound, we have

‖x‖2

〈x, v1〉2
≤ 4n

with a constant probability

Substituting this bound into the statement of Claim 13.4 gives us the theorem statement; with constant
probability we have,

yTMy

yT y
≥ (1− ε)λ1

1 + ‖x‖2
〈x,v1〉2 (1− ε)2k

≥ (1− ε)λ1
1 + 4n(1− ε)2k

≥ (1− ε)λ1
1 + 10n(1− ε)2k

.

This will complete the proof of Theorem 13.1.

It remains to prove Claim 13.4.

Proof of Claim 13.4. By definition of y,

yTMy = xTMkMMkx = xTM2k+1x

recalling that M is PSD and thus symmetric. Similarly, yT y = xM2kx.

Suppose λ1, . . . , λn are the eigenvalues of M and v1, . . . , vn are the corresponding eigenvectors. Then
λ2k+1
1 , . . . , λ2k+1

n are eigenvalues of M2k+1.

Let us divide the eigenvalues into two groups: λ1, . . . , λj where all of these are greater than or equal to
(1− ε)λ1, and λj+1, . . . , λn where all are less than (1− ε)λ1.

Let us first discuss the highlevel idea of the proof. For the sake of intuition assume that k � lgn
ε . Then we

may note that λkj+1 ≤ λk1(1 − ε)k ≤ λk1( 1
n2 ). It follows that

∑n
i=j+1 λ

2k
i ≤ nλ2kj ≤

λ2k
1

n , meaning the total

contribution of eigenvalues after j in the spectral decomposition of M2k is very small – if k is large, then
y is essentially in the span of v1, . . . , vj , and that is all I need to prove the claim, because all of the first j
eigenvalues are at least (1− ε)λ1.
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Next, we do the algebra. First, let us expand the spectral decomposition of M2k+1:

xTM2k+1x = xT

(
n∑
i=1

λ2k+1
i viv

T
i

)
x

=

n∑
i=1

λ2k+1
i 〈vi, x〉2

≥
j∑
i=1

λ2k+1
i 〈vi, x〉2

≥
j∑
i=1

(1− ε)λ1λ2ki 〈vi, x〉2

where in the last inequality we use the fact that λ1, . . . , λj ≥ (1 − ε)λ1. So this gives us a lower bound for
xTM2k+1x.

Next, we derive an upper bound for xTM2kx. Putting these together we will lower bound the ratio xTM2k+1x
xTM2kx

.
Proceeding similarly to the above, we note

xTM2kx =

n∑
i=1

λ2ki 〈vi, x〉2

=

j∑
i=1

λ2ki 〈vi, x〉2 +

n∑
i=j+1

λ2ki 〈vi, x〉2

≤
j∑
i=1

λ2ki 〈vi, x〉2 + (1− ε)2kλ2k1
n∑

i=j+1

〈vi, x〉2

≤
j∑
i=1

λ2ki 〈vi, x〉2 + (1− ε)2kλ2k1 ‖x‖2

where in the last inequality we used that λj+1, . . . , λn ≤ (1− ε)λ1 and that
∑n
i=j+1〈vi, x〉2 ≤ ‖x‖2, since we

are projecting x onto a set of at most n orthonormal vectors.

Now, substituting these bounds, we get

yTMky

yT y
=
xTM2k+1x

xTM2kx
≥

(1− ε)λ1
∑j
i=1 λ

2k
i 〈vi, x〉2∑j

i=1 λ
2k
i 〈vi, x〉2 + (1− ε)2kλ2k1 ‖x‖2

=
(1− ε)λ1

1 +
(1−ε)2kλ2k

1 ‖x‖2∑j
i=1 λ

2k
i 〈vi,x〉2

≥ (1− ε)λ1
1 + (1− ε)2k ‖x‖

2

〈x,v1〉2
.

as desired

13.3 Application of Power Method in Spectral Partitioning

For the spectral partitioning algorithm, we require a means of quickly computing an (approximate) second-
smallest eigenvector of the normalized Laplacian matrix, i.e., ideally we would like to find a vector x such
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that

xT L̃x

xTx
≤ (1 + ε)λ2,

where λ2 is the 2nd smallest eigenvalue of L̃. Noting Theorem 13.1, power method seems to be the method
of choice as it gives multiplicative approximation in almost linear time. Note that since we are looking for
the (second) smallest eigenvalue we need to apply the power method to a modified version of the normalized
Laplacian. Ideally, we would like to modify the matrix such that the smallest eigenvalues become the largest
ones and then apply power method.

Recall that we defined the normalized Laplacian matrix of a graph as L̃ = I −D− 1
2AD−

1
2 . It is not hard to

see that the largest eigenvalue of L̃ is at most 2. So, we now consider M = 2I − L̃. This matrix is also a
PSD matrix and the order of the eigenvalues is the opposite of the eigenvalues of L̃, i.e., for every eigenvalue
λi of L̃, 2− λi is an eigenvalue of M . So, in particular, the second largest eigenvalue of M is 2− λ; and we
are trying the estimate its eigenvector. Now, all we need to do is to use the power method.

Firstly, recall that we showed v1 = D1/21 is the smallest eigenvector of L̃; so it is also the largest eigenvector
of M . We can find the second-largest eigenvector of M by finding the vector with largest Rayleigh quotient
among all vectors orthogonal to v1. First, we let x to be a random Gaussian vector, and then we make it
orthogonal to v1, and we run the power method on the resulting vector. See notes of the last lecture for
details.

By Theorem 13.1 we find a vector y such that

yT (2I − L̃)y

yT y
≥ (1− ε)(2− λ2)

in time O(|E| log n/ε). From the above inequality we can conclude that yTLy ≤ yT y(λ2 + 2ε), i.e., we get a
2ε additive approximation to the second eigenvector of L̃. This bound is not ideal for our purposes, since it
is additive error. For example, if G is a cycle, then λ2 = O(1/n2), so the Rayleigh quotient can very large
unless ε = O(1/n2). But, in that case the power method takes cubic time O(|E|n2).

An alternative approach that would yield multiplicative approximation to the second eigenvalue/eigenvector
of L̃ is use the inverse of L̃, L̃−1. L̃−1 which is also PSD and has eigenvectors in reverse order. For this
matrix any multiplicative approximation of eigenvalues of L̃−1 will also give a multiplicative approximation
of eigenvalues of L̃. Note that the smallest eigenvalue of L̃ is 0, so L̃−1 is not well-defined. To avoid that we
will consider the pseudoinverse of L̃, defined and denoted as follows:

L̃+ :=
∑
i:λi 6=0

1

λi
viv

T
i

where the vi are the eigenvectors corresponding to the eigenvalue λi of L̃.

Now, all we need to do is to run the power method on L̃+. But computing L̃+ is as hard as computing
the SVD of L̃. The idea is that computing L̃+x, for a given vector x, is equivalent to solving the system
of linear equations L̃y = x. There are very efficient methods for solving systems of linear equations for a
Laplacian matrix in almost linear time (see the course website for several pointers). Using that we can give
a multiplicative 1 + ε approximation to the second smallest eigenvalue of L̃ by solving O(log n/ε) systems of
linear equations. So, the algorithm will run in almost linear time. Putting this together with the spectral
partitioning algorithm this gives a near linear time algorithm to approximate φ(G).
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13.4 Random Walks

In this section, we will introduce random walks on graphs, and we see that many of the theorems that
we proved for the normalized Laplacian matrix naturally translates to the properties of the random walk
matrix. Here, we will discuss random walks on undirected graphs, but much of the ideas that we discuss
also translates to random walks in general directed graphs.

First, we will define the first-order Markov property. For a stochastic process, we say it has the first order
Markov property if the process’s state at time t+ 1, Xt+1, depends only at its state in the previous instant,
time t. That is,

P [Xt+1|Xt, . . . , X1] = P [Xt+1|Xt] .

A random walk on a graph is one such Markov process. In this case, the state at time t simply refers to the
vertex the walker has reached and the probability of transiting from vertex i at time t to j at time t+ 1 is
the weight of the edge from i to j, wi,j , divided by the total weight of the outgoing edges of i, dw(i), i.e.,

P [Xt+1 = j|Xt = i] =
wi,j
dw(i)

.

We can express the transition probabilities as a matrix. We define the n × n transition probability matrix
P as follows: For all valid indices i, j,

Pi,j =

{
w(i,j)
dw(i) if i, j are neighbors

0 otherwise
.

where dw(i) =
∑
k wi,k is the total weight of edges incident to i.

Note that the above definition means that P = D−1A, where A is the adjacency matrix of a graph and D
is the degree matrix. This has interesting implications for the eigenvalues of P , which we will now briefly
explore. P may or may not be symmetric. In particular, if the graph is regular P is symmetric and otherwise
it is not. However, it can be seen that P always have real eigenvalues. Its left and right eigenvectors are
not necessarily the same, but its eigenvalues are equal to the eigenvalues of the normalized adjacency matrix
D−1/2AD−1/2. Recall that the left eigenvector is a vector v such that vTM = λvT ; in a symmetric matrix,
each left eigenvector will be the transpose of a right eigenvector, but they do not need to correspond in this
manner for P .

Claim 13.5. The eigenvalues of P are the same as the eigenvalues of the normalized adjacency matrix,
D−

1
2AD−

1
2 . Since L̃ = I −D− 1

2AD−
1
2 , each eigenvalue λi of L̃ corresponds to an eigenvalue 1− λi of P .

Proof. Suppose we had a right eigenvector v of P , so

D−1Av = λv.

Let x = D
1
2 v, so v = D−

1
2x.

Now we will substitute this last identity into our equation above to yield

D−1AD−
1
2x = λD−

1
2x.

If we multiply both sides of the equality from the left by D
1
2 , we obtain

D−
1
2AD−

1
2x = λx.

thus establishing that for each right eigenvector v of P with eigenvalue λ, D
1
2 v is an eigenvector of D−

1
2AD−

1
2

with the same eigenvalue.
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Reasoning along similar lines to the above proof, we may conclude that if x is an eigenvector of D−
1
2AD−

1
2 ,

then D
1
2x is a left eigenvector of P and, as we saw in the proof, D−

1
2x is a right eigenvector of P .

What are the ramifications of this relationship between the eigenvalues of P and L̃? In the next lecture, we
will use this information to relate the second-smallest eigenvector of L̃ to the mixing time of the random
walk. The mixing time is the time at which the probability distribution of possible locations of the random
walker will converge to some fixed distribution no matter the starting point of the random walk, called the
stationary distribution (specifically, we define the mixing time to be the maximum number of steps to reach
the stationary distribution, quantifying over the time to reach the stationary distribution from each possible
starting vertex, but this will all be defined in greater detail in the following lecture).
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