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Lecture 12: Cheeger’s Inequality cont., Spectral Clustering, Power Method
Lecturer: Shayan Oveis Gharan 02/22/17 Scribe: Elizabeth Clark

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.1 Cheeger’s Inequality (continued)

12.1.1 Review from last class

Definition 12.1 (Conductance). Given a graph G = (V,E) with V partitioned into S and S̄, the conductance
of S is defined as:

φ(S) =
|E(S, S̄)|

vol(S)

The conductance of G is defined as:
φ(G) = min

vol(S)≤ vol(V )
2

φ(S)

Theorem 12.2 (Cheeger’s Inequality). For any graph G,

λ2

2
≤ φ(G) ≤

√
2λ2

Question: Why aren’t we looking at the mincut as a measure of conductance? Why are we normalizing by

the size/volume of S in |E(S,S̄)|
vol(S) ?

Answer: Consider a network of roads. One road in this network is a highway that connects two major
cities. Another is your driveway that connects your house to the rest of the network. If cut either of these
roads, it will divide the network into two disconnected sub-networks, so these are two mincuts of our graph
each with size 1. However, the two roads have very different levels of conductance. The numbers of drivers
inconvenienced by the shutdown of a highway is much greater than those inconvenienced by the shutdown
of your driveway.

12.1.2 Continuation of proof of Cheeger’s Inequality

In this lecture we prove the easy direction of Cheeger’s inequality, i.e., we show that, for any graph G,

λ2

4
≤ φ(G). (12.1)

Note that one can also show φ(G) ≥ λ2/2, but here for the sake of simplcity we show the above weaker
version.

For simplicity of the argument, we assume that G is d-regular. Recall that the normalized Laplacian matrix
is defined as

L̃ = D−1/2LD−1/2 = L/d,
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where the last equality holds because G is d-regular. So, the first eigenvector of L̃ is the all ones vector, 1
with eigenvalue 0.

So by Rayleigh quotient,

λ2 = min
x:x⊥1

xT L̃x

xTx
= min
x:x⊥1

∑
i∼j(xi − xj)2

d
∑
x2
i

. (12.2)

To prove (12.1), we need to relate this value to

φ(G) = min
S:vol(S)≤vol(V )/2

φ(S).

Let S be the best set in the RHS of above, i.e., assume φ(S) = φ(G) and vol(S) ≤ vol(V )/2. We can write,

φ(S) =
|E(S, (̄S)|

vol(S)

=

∑
i∼j |I [i ∈ S]− I [j ∈ S] |

d · |S|
.

Note that |I [i ∈ S] − I [j ∈ S] | = 1 if and only if i, j lie on two different sides of the cut (S, S). In the
denominator of the above we used that G is d-regular, so vol(S) = d · |S|.

Recall that as usual

1Si =

{
1 i ∈ S
0 otherwise.

Therefore, we can write

φ(S) =

∑
i∼j |1Si − 1Sj |
d
∑

1Si
=

∑
i∼j |1Si − 1Sj |2

d ·
∑n
i=1 1Si

2 .

In the last equality we used the fact that |1Si − 1Sj | is always 0 or 1; so its square is the same.

Note that the above equation is very similar to (12.2). Roughly speaking, in the above we are looking at
the Rayleigh quotient for a specific vector 1S whereas the RHS of (12.2) is the minimum posible value of
Rayleigh quotient over all vectors in Rn. So, it seems that we should get φ(G) = φ(S) ≥ λ2.

This is however is not quite right: The minimum in the RHS of (12.2) is taken over all vectors orthogonal
to the all ones vector, 1, and the vector 1S is not orthogonal to 1. In general, if we to make a given vector
x orthogonal to a vector v we let

x = x− 〈x, v

‖v‖
〉 v
‖v‖

.

So, in this case we want to 1S orthogonal to 1 we need to let

x = 1S − 〈1S ,1/‖1‖〉1/‖1‖ = 1S − (|S|/
√
n)1/

√
n = 1S − |S|

n
.

So, to prove (12.1), we need to show that

∑
i∼j |1Si − 1Sj |2

d
∑

1Si
2 ≥ 1

4

∑
i∼j(xi − xj)2

d
∑
x2
i

(12.3)

where x = 1S − |S|n . Note that the numerator is shift-invariant, i.e.,∑
i∼j

(xi − xj)2 =
∑
i∼j

((xi − c)− (xj − c))2
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for any c ∈ R. Therefore, the numerators of the left and right hand sides of (12.3) are equal. So, it is enough
to show that

‖x‖2 ≥ 1

4
‖1S‖2.

Note that the above inequality is not true if S = V . In fact, this is the only place in the proof that we
use that vol(S) ≤ vol(V )/2, i.e., |S| ≤ n/2 in regular graphs. Here, we prove a weaker version of the above
inequality.

Claim 12.3. Let |S| ≤ n/2 and x = 1S − |S|/n. Then,

‖x‖2 ≥ 1

4
‖1S‖.

Proof. First note that since |S| ≤ n/2, we have |S|/n ≤ 1/2. We can write,

‖x‖2 =
∑

x2
i ≥

∑
i∈S

(
1− |S|

n

)2

≥ |S|(1

2
)2 =

|S|
4
,

where in the second inequality we used |S|/n ≤ 1/2.

This completes the proof of (12.3) which completes the proof of the easy direction of Cheeger’s inequality
(12.1).

We do not prove the following lemma; interested reader can see lecture notes of more advanced courses linked
in the course website for the proof of the harder direction of Cheeger’s inequality.

Lemma 12.4. For all x ⊥ 1, the spectral partitioning algorithm returns S such that φ(S) ≤ 2
√

xT L̃x
xT x

.

The importance of the above lemma is that we don’t need to find the actual eigenvector of λ2 to use the

spectral partitioning algorithm. As long as we can approximately minimize the Rayleigh quotient, x
T L̃x
xT x

, we
can run the spectral partitioning algorithm on the approximate vector to obtain a set S of small conductance.
In section 12.3 we will see how to find an approximate second eigenvector of the L̃ in almost linear time.

12.1.3 A Bad example for Spectral Partitioning Algorithm

Spectral Partitioning Algorithm does not always return the optimal solution, in fact it may return a set of
a singificantly larger conductance than the optimum. Consider the following example.

Suppose we have the graph shown in Figure 12.1. Consider 2 possible cuts of this graph. Cut 1 (shown in

red) will give a conductance value 4
2n , or O( 1

n ). Cut 2 (shown in green) will give a conductance value of
n 50
n2

2n ,
or O( 1

n2 ). While Cut 2 is much better than Cut 1, SPA will return Cut 1. This is because the 2nd smallest
eigenvector of this graph is the same as the 2nd smallest eigenvector of a cycle, i.e., it maps the endpoints of
each dashed edge to the same value. Because of that the algorithm indeed returns a cut whose conductance
is n times the optimum.

12.2 Spectral Clustering Algorithm

This is a brief discussion of Ng, Jordan, and Weiss [NJW02] paper on spectral clustering.
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Figure 12.1: A weighted graph comprised of two cycles. The conductance of the red cut is n times the
conductance of the green cut, but the spectral partitioning algorithm returns the red cut.

(a) Original data (b) Data after spectral clustering

Figure 12.2: Spectral clustering: before and after

Motivating Example: Suppose you want to cluster a set of points, but your points look something like
those depicted in Figure 12.2a. In this case, you want to find the green and black clusters. If you run
k-means on this data, you won’t find these clusters.

Instead, we can use SPA by creating a graph from this data by connecting points with an edge of weight

e
−‖xi−xj‖

2

σ2 ,

where xi, xj represents any two datapoints in Rd. Note that the above Gaussian kernel is maximized if xi is
very close to xj . The parameter σ must be tuned based on the particular application in mind.

After constructing this graph, we compute the normalized Laplacian matrix and the first k eigenvectors
v1, v2, . . . , vk of the matrix (since we want a k-partition of the graph).

Then we build the spectral embedding of graph, i.e., a matrix

F =

D
− 1

2 v1

...

D−
1
2 vk

 ∈ Rk×n,
which has a column for every vertex in the graph. Now, we map each vertex of graph (or each data point) i
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to a point in k dimensions corresponding to the i-th column of the above matrix. It turns out that in this
new mapping the each cluster of points will be mapped close to one another, see Figure 12.2b and we can
use k-means to find the k partition. In ?? we give a rigorous analysis of (a varaint of) this algorithm; we
show that for any graph G we can find k disjoint sets S1, . . . , Sk each of conductance O(

√
lambdakk

2). In
other words, this shows that if the graph that we construct from the data points has k small eigenvalues
then we can use k means to find a k partitioning of the graph. Also, conversely, if the first k eigenvalues of
G are not small, then there is no “good” k partitionings of G.

12.3 Power Method

We discussed in previous lectures that computing SVD takes cubic time in the size of the matrix. So, one
in general is interested in faster algorithms for computing (approximating) eigenvalues/eigenvectors of a
matrix. The Power Method is a method to approximate the largest eigenvalue of a PSD matrix M within a
multiplicative 1± ε factor in time linear in the number of nonzero entries of M .

Recall that a Guassian vector x ∈ Rn, is a vector of n independently chosen N (0, 1) random variable, i.e.,
for all 1 ≤ i ≤ n, xi ∼ N (0, 1).

Algorithm 1 Power Method

Input: Given a PSD matrix M � 0.
Choose a random Gaussian vector x ∈ Rn.
for j = 1→ k do

x←Mx . For numerical stability, set x← x
‖x‖ ; we don’t add it here to get a simpler proof.

end for

return x, x
TMx
xT x

Let y be the output vector of Algorithm 1. In our main theorem we show that y is an approximate largest
eigenvector of M .

Theorem 12.5. Given a matrix M � 0 with eigenvalues λ1 ≥ λ2 ≥ . . . λn, for any ε > 0 and integer k > 1
with constant probability,

yTMy

yTy
≥ λ1(1− ε)

1 + 10n(1− ε)2k
.

Note that ε is a parameter of choice in the above theorem (it has nothing to do with the algortihm). We
should choose it based on the error that we can tolerate in our application. For a given ε, letting k = lgn

ε in

Algorithm 1 the RHS of the above theorem becomes λ1(1−ε)
1+ 1

n

.

Also, observe that the algorithm runs a loop for k iterations; each iteration is just a matrix vector product
which can be implemented in time O(nnz(M). It follows that for any PSD matrix M we can use the above
theorem to find a vector y such that the Rayleigh quotient of y is at least (1− ε)λ1. The algorithm will run
in time O( 1

ε nnz(M) log n).

Before discussing the proof of the above theorem, let us discuss two remarks:

Remark 12.6 (2nd largest eigenvalue:). Suppose we want to estimate the 2nd largest eigenvalue of M .
Then, we can first run the above algorithm to find an approximate largest eigenvector y. Then, we choose
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another random Gaussian vector x. First we make x orthogonal to y by letting:

x = x− 〈x, y

‖y‖
〉 y
‖y‖

.

In other words, if ‖y‖ = 1, we let
x = x− 〈x, y〉y.

Remark 12.7 (Eigenvalues of Symmetric Matrices). Suppose that M is not PSD but it is a symmetric
matrix. Then, we can run the above algorithm on M2 which is a PSD matrix. The algorithm gives a 1± ε
approximation of the largest eigenvalue of M in absolute value.

Remark 12.8 (2nd Smallest eigenvalue of L̃). First of all, it turns out that the largest eigenvalue of L̃ is at
most 2. Therefore, we can turn the smallest eigenvalues of L̃ into the largest ones by working with 2I − L̃.
Note that 2I − L̃ is PSD, and the 2nd smallest eigenvalue of L̃ is the 2nd largest eigenvalue of 2I − L̃. Now,
all we need to do is to choose a Gaussian random vector x and make it orthogonal to the largest eigenvector
of 2I − L̃, and then use the power method

Recall that the smallest eigenvector of L̃ is v1 = D1/21. This is because

vT1 L̃v1 = 1TD1/2(D−1/2LD−1/2)D1/21 = 1TL1 =
∑
i∼j

(1i − 1j)
2 = 0.

Therefore, to find the 2nd smallest eigenvector of L̃ we do the following: Choose a random Gaussian vector
x. Then, let

y = x− 〈x, v1/‖v1‖〉v/‖v1‖,

where v1 = D1/21. Then calculate (2I − L̃)ky as an approximation of the 2nd smallest eigenvalue of L̃. We
will analyze this algorithm in the next lecture.

To prove the above theorem, we use the following 3 claims:

Claim 12.9. For any Gaussian random vector x ∈ Rn and any unit-norm vector v ∈ Rn, we have

P
[
|〈x, v〉| ≥ 1

2

]
≥ Ω(1)

Proof. First of all observe that E [〈x, v〉] = 0 and

E
[
〈x, v〉2

]
=
∑
i,j

xivixjvj =
∑
i,j

vivjE [xixj ] =
∑
i

v2
i E
[
x2
i

]
=

n∑
i=1

v2
i = ‖v‖2 = 1.

Since 〈x, v〉 is a linear combination of independent normal random variables, it is also a normal random
variable. So, from the above equations, we have 〈x, v〉 ∼ N (0, 1). But, it can be seen from the CDF of the
standard normal random variable that if g ∼ N (0, 1), then

P [|g| ≥ 1/2] ≥ Ω(1)

as desired.

Letting v = v1, the eigenvector of λ1, we get that

P
[
|〈x, v1〉| ≥

1

2

]
≥ Ω(1). (12.4)
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Claim 12.10. For any Gaussian random vector x ∈ Rn, we have

P
[
‖x‖2 ≤ 2n

]
≥ 1− e

−n
8 .

P
[
|
∑
xi

2 − n| > ε
]
≤ e−ε

2

8n . In other words, square of the norm of a Gaussian random vector is at most 2n
with high probability.)

Proof. The proof follows from strong concentration bounds on sum of independent normal random variables.
We use the following theorem withouth proof:

Theorem 12.11. Let g1, . . . , gn ∼ N (0, 1) be independent normal random variables. Then,

P
[∣∣∣∣ 1n (g2

1 + · · ·+ g2
n)− 1

∣∣∣∣ ≥ ε] ≤ e−nε2/8.
The proof of this is very similar to the proof of Chernoff/Hoeffding concentration inequalities and we are
not going into the details. So, we can write

P
[
|x2

1 + · · ·+ x2
n − n| ≥ ε

]
≤ eε

2/8n.

Letting ε = n in the above proves the claim.

Our last claim which finishes the proof of Theorem 12.5 is not probabilistic anymore.

Claim 12.12. For all vectors x ∈ Rn, ε > 0 and and y = Mkx we have

yTMy

yT y
≥ λ1(1− ε)

1 + ‖x‖2
〈x,v1〉2 (1− ε)2k−1

.

Now, if x in the above claim is a Gaussian random vector, then with a constant probability ‖x‖2
〈x,v1〉2 ≤ 4n

with a constant probability. This simply follows from (12.4) and Claim 12.10.

We will prove the last claim in the next lecture.
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