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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we discuss Spectral Graph Theory, Conductance, Cheeger’s Inequality, and Spectral Cluster-
ing.

11.1 Spectral Graph Theory

In the field of spectral graph theory we relate combinatorial properties of graphs to their algebraic properties.
Combinatorial properties of a graph G can refer to whether it is connected, its diameter, its spanning trees,
etc. Algebraic properties refer eigenvalues/eigenvectors of Adjacency matrix (A), Laplacian matrix (L),
Random Walk matrix P , etc.

Here are some known results from Spectral Graph Theory are shown below:

Theorem 11.1.

λ2(L) = 0 ⇐⇒ G is disconnected

This theorem relates the value of the 2nd smallest eigenvalue of the Laplacian L of G to whether or not G
is connected.

Theorem 11.2. For all k ≥ 2,

Diam(G) ≤ k log n

λk(L̃)

This theorem specifies a relationship between the diameter of G and the eigenvalues of its Normalized
Laplacian matrix L̃. The Normalized Laplacian Matrix will be defined later in the lecture.

Theorem 11.3. For any graph G,

det(L+
11T

n
) = # of spanning trees

where 1 is the all ones vector.

This theorem specifies that the determinant of the Laplacian of G with 11/n added to the value of every
cell, is equal to the number of spanning trees of G. Note that in general a graph may have an exponential
number of spanning trees, but since the determinant of any matrix can be computed efficiently, the above
theorem gives an efficient algorithm to count the number of spanning trees of a given graph G.

Today we will specifically be focusing on the Laplacian and Normalized Laplacian, and how they relate to
spectral clustering.
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11.1.1 Laplacian Matrix

In the last lecture we defined the Laplacian matrix. Recall, L = D−A where D is the Degrees matrix of G
and A is the Adjacency matrix of A. The quadratic form of the Laplacian is:

xTLx =
∑
i∼j

(xi − xj)2

Where i ∼ j means that there exists an edge in G between i and j.

This quadratic form implies that L < 0 (meaning the Laplacian is PSD, or positive semi-definite). This form
also implies that the all-ones vector 1 is an eigenvector of L, with the eigenvalue 0.

With these definitions in place, we attempt to prove the first theorem stated earlier in the lecture, proving
each direction if the iff separately.

Claim 11.4. G is disconnected =⇒ λ2 = 0

Proof. Since G is disconnected, we can split it into two sets S and S such that |E(S, S)| = 0. Let

x =
1S

|S|
− 1S

|S|

where as usual 1S represents the indicator of S.

The quadratic form of L implies that xTLx = 0, as all neighboring vertices were assigned the same weight
in x. We now show that x is orthogonal to the first eigenvector 1.

〈x,1〉 =
∑

xi1i =
∑
i∈S

1

|S|
−

∑
i∈S

1

S
= 0

Therefore λ2 = 0.

Claim 11.5. λ2 = 0 =⇒ G is disconnected

Proof. First, by the quadratic form,
λ2 = 0 =⇒ ∃x ⊥ 1 s.t.

xTLx =
∑
i∼j

(xi − xj)2 = 0 ⇐⇒ (xi − xj)2 = 0 ∀i ∼ j

For the sake of contradiction suppose G is connected. Then, (xi − xj)
2 = 0 ∀i ∼ j holds true only if

xi = xj ∀i, j. However, we know that:

x ⊥ 1 : 〈x, 1〉 =
∑
i

xi = 0

So x is not a constant vector, i.e., ∃i, j : xi 6= xj Therefore we have a contradiction and G must be
disconnected.

11.2 Graph Partitioning

We will now talk about graph partitioning. What are we actually looking for by partitioning a graph? If a
graph comes from data points, and edges represent their similarity, then we may be partitioning it to find
clustered data. If the graph comes from a social network where edges represent friendships, then we may be
partitioning it to find communities of friends.
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11.2.1 Graph Partitioning Objectives

In Computer Science, whether or not a partitioning of a graph is a ’good’ partitioning depends on the value
of an objective function, and graph partitioning is an optimization problem intended to find a partition
that maximizes or minimizes the objective. The appropriate objective function to use depends on where the
graph came from and what we are trying to find.

Some examples of objective functions are given below:

Definition 11.6 (Diameter). The diameter of a graph refers to the maximum of the shortest paths between
all pairs of vertices in the graph. When using this objective function, the goal is to find the partitioning where
the partitions have the smallest possible diameters, which implies some level of ’closeness’ between vertices
in the partition.

Definition 11.7 (Clustering Coefficient:). Count the number of triangles in G. The number of triangles in
a graph is useful as an objective when trying to partition social networks, as within a community we expect
friends of friends to also be friends.

Definition 11.8 (Conductance). Given a graph G = (V,E) with the vertices partitioned into (S, S), the
conductance of partition S is defined as:

φ(S) =
|E(S, S)|
vol(S)

where the volume of a partition is defined as the sum of the degrees of vertices in that partition:

vol(S) =
∑
i∈S

d(i)

The above definition naturally extends to weighted graphs. Say G is weighted, and the weight of the edges
connecting i to j is wi,j . Then,

φ(S) =
w(S, S

volw(S)
=

∑
i∼j:i∈S,j /∈S wi,j∑

i∈S dw(i)
,

where dw(i) =
∑

j∼i wi,j is the weighted degree of i.

11.2.2 Conductance

Conductance has the property that 0 ≤ φ(S) ≤ 1, with value 0 when all edges of vertices of S stay within
S, and a value of 1 when all edges of vertices of S go to vertices in S. In general we want to find partitions
with small conductances.

An intuitive reason why we would want this, going back to the community finding example, is that if a
community has a small conductance there are many more friendships within a community than between
members of the community and people from outside of the community.

As S = V =⇒ φ(S) = 0, in order to find the best partitioning according to conductance we look for S with
the smallest conductance such that vol(S) ≤ 1

2vol(V ), and define the conductance of the best partitioning
of G to be:

Definition 11.9.
φ(G) = min

vol(S)≤vol(V )/2
φ(S)
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For a cycle of n vertices, the smallest conductance partitioning occurs when its left and right halves are
separate partitions, and it has conductance φ(S) = 2

n .

For a complete graph with n vertices the best partitioning occurs when the graph’s vertices are partitioned
into two equal halves, and it has conductance φ(S) = 1

2 . In an intuitive sense this means that unlike a cycle,
a complete graph is not partitionable.

11.3 Approximating φ(G): Sparsest Cut Problem

There are three well known algorithms for finding a partition that has a conductance close to φ(G).

Spectral Partitioning finds a partition S such that φ(S) ≤ 2
√
φ(G)

Linear Programming finds a partition S such that φ(S) ≤ O(log n)φ(G)

Semi-Definite Programming (SDP) finds a partition S such that φ(S) ≤ O(
√

log n)φ(G)

Finding an algorithm with an approximation factor better than O(
√

log n) remains one of the big open
problems in the theory of algorithm design. Here we will only be discussing Spectral Partitioning, but the
Linear Programming algorithm is covered in the Random Algorithms class.

We will shortly describe the Spectral Partitioning algorithm, but to do so we must first define the Normalized
Laplacian Matrix.

Definition 11.10 (Normalized Laplacian Matrix). Given a graph G, the normalized Laplacian matrix is
defined as follows:

L̃ = (D−
1
2LD−

1
2 )i,j =

Li,j√
didj

= I −D− 1
2AD−

1
2

Recall that D is the Degrees matrix, and D−
1
2AD−

1
2 is the Normalized Adjacency matrix.

The Normalized Adjacency matrix also has the property that:

eig val (D−
1
2AD−

1
2 ) = eig val (P )

Where P is the Random Walk matrix. Additionally, the first eigenvector of L̃ is D1/21.

With these definitions in place, we are now ready to describe the Spectral Partitioning Algorithm.

Algorithm 1 Spectral Partitioning Algorithm

Let x be the 2nd smallest eigenvector of L̃
Sort the vertices (rename them) such that:

x1√
d1
≤ x2√

d2
≤ · · · ≤ xn√

dn

for i = 1→ n do
Let S = {1, . . . , i}.
Compute φ(S).

end for
Return the minimum conductance among all sets S in the loop where vol(S) ≤ vol(V )/2.



Lecture 11: Spectral Graph Theory 11-5

The sweep across the partitions in the algorithm can be computed in O(|E|), by incrementally computing
the conductance of each partition by updating the previously computed conductances with the edges of the
newest vertex.

The challenging part of this algorithm is finding the 2nd smallest eigenvector. The next lecture will show
that approximating the 2nd eigenvector is sufficient, turning this into an approximate algorithm for finding
the partitioning that runs in near linear time.

Note that everything we described so far naturally extends to weighted graphs, and the above algorithm can
also be used to find a sparse cut of a weighted graph.

11.3.1 Cheeger’s Inequality

The following theorem is one of the fundamental inequalities in spectral graph theory.

Theorem 11.11 (Cheeger’s Inequality). For any graph G,

λ2/2 ≤ φ(G) ≤
√

2λ2

where λ2 is the 2nd smallest eigenvalue of L̃.

Cheeger’s inequality relates the combinatorial property of conductance to a spectral property, the 2nd small-
est eigenvalue. Observe that in the extreme case where λ2 = 0, we also have φ(G) = 0 and vice versa. We
have already seen the proof of this in Claim 11.4 and Claim 11.5.

A crucial fact about the above inequality is that it does not depend on the size of G, n. It implies that if G
has a “small” 2nd eigenvalue, then it is partitionable, whereas if the 2nd eigenvalue is “large” the graph is
similar to a complete graph and it is not partitionable.

The proof of the right side of Cheeger’s inequality, φ(G) ≤
√

2λ2 is constructive, and it shows that the
spectral partitioning algorithm always returns a set S such that vol(S) ≤ vol(V )/2 and

φ(S) ≤
√

2λ2 ≤
√

4φ(G).

We now discuss several consequences of the above theorem for a special family of graphs.

Definition 11.12 (Expander Graphs). Expander graphs are sparse highly connected graphs with large 2nd
eigenvalues, i.e., λ2 ≥ Ω(1). So, the can be seen as a sparse complete graphs which have λ2 = 1. It turns
out that most of the graphs are expanders, because a random d-regular graph satisfies λ2 ≥ 1− 2√

d

Expander graphs are the easiest instances to use for many of the optimization problems (see PS4 for appli-
cations to the max cut problem). They are frequently used in coding theory (see PS4) and in psuedorandom
number generators. In Problem Set 4, we will discuss the expander mixing lemma, which states that Ex-
pander Graphs are approximately the same as random graph. In words, in a d-regular expander graphs,
for every disjoint large sets S, T , |E(S, T )| is very close to the expected number of edges between S, T in a
random G(n, d/n) graph.

Definition 11.13 (Planar Graphs). A planar graph is one where all vertices can be projected onto a plane
with no crossing edges.

We know a lot about planar graphs. For example, we know that they tend to be sparse with average degrees
at most 5.

It turns out that the 2nd eigenvalue of L̃ of any planar graph is at most O(1/n).
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Theorem 11.14. If G is a bounded degree planar graph, the

λ2 ≤ O(
1

n
).

Using the Cheeger’s inequality, we can show that for every bounded degree planar graph G, φ(G) ≤ O(1/
√
n).

In fact, by repeatedly peeling off sets of small conductance in G, we can show that every planar graph with
bounded degree has a sparse bisection, i.e., a set S ⊆ V such that vol(V )/3 ≤ vol(S) ≤ 2 vol(V )/3 and
φ(S) ≤ O(1/

√
n). This means that it is very easy to break a bounded degree planar graph into two sets such

that there is very small number of connections between the two. This makes planar graphs ideal candidate
for divide and conquer algorithms. We can recursively solve our problem on the two sides S, S and then
merge the solutions. Since there are only O(

√
n) edges between S, S, the merge operation can be done very

efficiently

Finally, we also note that we can generalize the task of partitioning a graph into two sets, into partitioning
a graph into k sets. Doing so, we define the k-way conductance of a graph to be:

Definition 11.15 (k-way conductance). For an integer k > 1 and a graph G, let

φk(G) = min
disjointS1,...,Sk

max
1≤i≤k

φ(S)

where the min is over all k disjoint sets S1, . . . , Sk in G.

In other words, we are interested in finding k disjoint sets such that their maximum conductance is as small
as possible. With this definition, φ(G) corresponds to the case k = 2.

It turns out that there is a natural generalization of Cheeger’s inequality for larger values of k.

Theorem 11.16. For any graph G and an integer k > 2,

λk/2 ≤ φk(G) ≤ O(
√
λk · k2)

φk(G) ≤ O(
√

log k · λ2k).

Note that the second inequality is stronger than the first one only when λ2k is not much larger than λk.
Similar to Cheeger’s inequality, the proof of the right side of this inequality is constructive and provides an
algorithm to k disjoint sets with small conductance.


	Spectral Graph Theory
	Laplacian Matrix

	Graph Partitioning
	Graph Partitioning Objectives
	Conductance

	Approximating (G): Sparsest Cut Problem
	Cheeger's Inequality


