
CSE 521: Design and Analysis of Algorithms I Spring 2016

Lecture 7: Nearest Neighbor Search, Locally Sensitive Hashing
Lecturer: Shayan Oveis Gharan April 18th Scribe: Yvonne Chen

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we discuss the nearest neighbor search problem. The material is based on the work of Indyk
and Motwani [IM98] for which they received a Gödel prize in 2012.

7.1 Introduction

Given a set P ∈ Rd of n points, in the nearest neighbor search problem (NNS) we are interested in con-
structing a data structure such that for any given point q ∈ Rd we can return the point in P that is closest
to q with respect to the distance function dist(p, q) as fast as possible.

If d = 1, we can simply sort the points and do a binary search; so we can answer the query in time O(log n).
We can extend this idea to d dimensions; this leads to famous data structures known as k-d trees and quad
trees. Unfortunately, the memory that we need for any of these data structures grows exponentially in d,
i.e., nd. So, even if d is about 30 it is impossible to run these algorithms on today’s computers.

7.1.1 Approximate NNS Problem

Indyk and Motwani decided to study the approximate version of the problem. Roughly speaking the goal
is to design an algorithm that can approximately solve the NNS using a memory of size poly(n) and query
time which is sublinear in n. The approximate NNS is defined as follows:

Definition 7.1 (c, r approximate NNS). Given a set of n points P ∈ Rd, and parameters r, δ > 0, construct
a data structure that for a query point q ∈ Rd, if there is a point p such that dist(p, q) ≤ r, return a point p̃
such that dist(p̃, q) ≤ c · r with probability at least 1− δ.

The main idea of Indyk and Motwani is to reduce the NNS problem to the construction of Locally sensitive
hash functions. Roughly speaking they show that if there is a locally sensitive hash function for the distance
function dist(., .) then one can use that to design an algorithm for the NNS problem.

Definition 7.2 ((r, c · r, p1, p2)-locally sensitive hash function). Let H = {h : P → Z} be a set of hash
functions that map the points P to some discrete set, e.g., the set of all integers. We say H is (r, c ·r, p1, p2)-
LSH if for any p, q ∈ Rd it satisfies the following two properties,

i) if dist(p, q) ≤ r, then Ph∼H [h(p) = h(q)] ≥ p1, and

ii) if dist(p, q) > c · r, then Ph∼H [h(p) = h(q)] ≤ p2.

Note that ideally we like p1 � p2. In other words, we would like that the hash functions map close points
to the same value with high probability and map distant points to different values with high probability. As
we will see, the larger value of p1/p2 leads to more efficient algorithms for NNS.

Let us give a motivating example to better understand the above definition. Let P ∈ {0, 1}d, be a subset of
the points of a d-dimensional hypercube, and let dist(p, q) = ‖p − q‖1 be the number of bits that p and q
differ in their bitwise representation.

7-1

7-2 Lecture 7: Nearest Neighbor Search, Locally Sensitive Hashing

Let H := {hi(p) = pi∀1 ≤ i ≤ d}, i.e., hi is the function that returns the i-th bit of p. For any p, q ∈ {0, 1}d
if dist(p, q) ≤ r, then

P [h(p) = h(q)] ≥ 1− r

d
≈ e−r/d = p1,

where the approximation follows assuming r � d. On the other hand, if dist(p, q) > c · r then

P [h(p) = h(q)] ≤ 1− r · c
d
≈ e−c·r/d = p2.

As we mentioned above, we would like p1 � p2, so the plan is to use many samples of H to amplify p1/p2. We
are going to design a 2-level hash function where the first level tries to reduce the probability that distance
points hash to the same value and the second level tries to increase the probability that close points hash to
the same value.

Let’s start with the first level. For a point p ∈ Rd let f(p) = [h1(p), h2(p)...hk(p)] where h1, . . . , hk are
independent samples ofH and k is an integer that we fix shortly. Now, if dist(p, q) > c·r, by the independence
of h1, . . . , hk we can write

P [f(p) = f(q)] ≤ pk2 .

We choose k such that pk2 = 1
n . Assuming that we can write∑

p∈P
P [f(p) = f(q)] = 1,

in other words, in expectation only one distant point is mapped to f(q). For that matter it is enough to let
k = log(n) · log 1

p2
.

Now, observe that for such a large k, the probability that a close point p is mapped to f(q) is nothing but
pk1 . Let ρ be chosen such that

pρ2 = p1. (7.1)

Then, if dist p, q ≤ r we have

P [fi(p) = fi(q)] = pk1 = pρ·k2 =
1

nρ
,

where we used that pk2 = 1/n.

We will see later that ρ is parameter that depends on the c the approximation factor of algorithm for the
NNS problem. Now, we want to boost up the above probability to an absolute constant, to make sure that
we can indeed find a point that is close to q. The idea is to use multiple independent chosen copies of f(p).
We are going to construct L = nρ hash tables, T1, T2..TL and for any point p ∈ P we store fi(p) in Ti for all
1 ≤ i ≤ L, For each i,

fi(p) = [hi,1(p), hi,2(p), . . . , hi,k(p)],

where hi,1(.), . . . , hi,k are independently sampled from H. To store the has values {fi(p)}p∈P we can simply
sort them. In that case we need to use O(kn) amount of memory and search takes O(k log n). A faster
algorithm is to hash these values; because we are hashing only n different values we only need to use O(n)
bits and searching takes O(1) steps.

Given a query point q, we go over all i ∈ L hash tables and every point p where fi(p) = fi(q) and we return
p if dist(p, q) ≤ c · r. For any point p where dist(p, q) ≤ r we have

P [∃i : fi(p) = fi(q)] ≥ 1− P [∀i : fi(p) 6= fi(q)] = 1− (1− pk1)
L

= 1−
(

1− 1

nρ

)L
= 1− (1− 1

L
)
L

= 1− 1

e

Lecture 7: Nearest Neighbor Search, Locally Sensitive Hashing 7-3

So with a constant probability, we find p. On the other hand, as alluded to above, for each 1 ≤ i ≤ L we
only see one distant point that is mapped to f(q). So, overall we see O(L) distant points in expectation.

Now, let us complete the analysis by analyzing the memory usage and the running time of our NNS algorithm.

Memory usage. We need to store L different values for each point p ∈ P This needs O(Ln) bits of memory

if we hash the values. Recall that L = nρ. By equation 7.1 we can write ρ = log(1/p1)
log(1/p2)

.

Query time. We just need to bound the time to go over the distant points. Since there are only O(L)
distant points in expectation, computing the distance between q and any such point takes O(L·d) operations.
Furthermore, computing f1(q), f2(q), . . . , fL(q) takes O(Lk) times. Overall, the run time is O(L(k + d))

Let us measure the memory usage and query time for the special case of the points on a hypercube. In that
case we have

ρ =
log(1/p1)

log(1/p2)
=

r/d

c · r/d
=

1

c
.

and k = log(n) · log(1/p2) = log(n) · d
c·r . Therefore, for c = 2 we L =

√
n. So, we need O(n3/2) bits of

memory and the query time is O(
√
n(d+ (d log n)/cr)).

We conclude this lecture by describing two additional examples of locally sensitive hash functions.

Jaccard Distance. Let P ⊆ 2[n], i.e., each point of P is a subset of [n] where as usual [n] = {0, 1, . . . , n−1}.
We can think of [n] as the set of all words and each point of P is a document. So we are modeling each
document as a bag of words and ignoring the ordering of the words in the document.

For A,B ∈ P , the Jaccard Distance of A,B is defined as follows:

J(A,B) =
|A ∩B|
|A ∪B|

.

Observe that if J(A,B) ≈ 1, then A,B have almost identical words and conversely if J(A,B) ≈ 0 then most
of the words in the two documents are the same. We can defined a distance function letting

dist(A,B) = 1− J(A,B).

Next, we describe a locally sensitive hash function for the above distance function.

Let σ : [n]→ [n] be a permutation. The idea is to use the minhash function that we studied in PS 2. We let
hσ(A) = mini∈A σ(i) be the smallest number that the elements of A are mapped to. We also let

H = {hσ : σ : [n]→ [n]}.

That is, we choose a uniformly random permutation and we map each set A to the smallest number that its
elements are mapped to. Observe that

Ph∼H [h(A) = h(B)] =
|A ∩B|
|A ∪B|

= J(A,B). (7.2)

This is because for any A,B, we have hσ(A) = hσ(B) only if

min
i∈A

σ(i) = min
i∈A∩B

σ(i) = min
i∈B

σ(i).

The above event happens with probability exactly J(A,B). Now, we can show that H is a (r, c ·r, e−r, e−cr)-
LSH.

7-4 REFERENCES

i) If dist(A,B) ≤ r, then J(A,B) ≥ 1− r. S, by (7.2),

P [h(A) = h(B)] ≥ 1− r ≈ e−r = p1.

ii) If dist(A,B) ≥ c · r, then J(A < B) ≤ 1− c · r. So, by (7.1),

P [h(A) = h(B)] ≤ 1− c · r ≈ e−c·r = p2.

`2 Distance. Let P ⊆ Rd and let
dist(p, q) = ‖p− q‖2.

The following hash function can be used as an LSH. Let g be a d-dimensional Gaussian vector, let w be a
large finite number and b chosen uniformly at random in [0, w). For a point p, we let

h(p) =

⌊
〈g, p〉+ b

w

⌋
.

It is a nice exercise to show that for the above LSH we have ρ = O(1/c).

References

[IM98] P. Indyk and R. Motwani. “Approximate nearest neighbors: towards removing the curse of dimen-
sionality”. In: STOC. ACM. 1998, pp. 604–613 (cit. on p. 7-1).

	Introduction
	Approximate NNS Problem

