
CSE 521: Design and Analysis of Algorithms I Spring 2016

Lecture 3: Streaming Algorithms
Lecturer: Shayan Oveis Gharan April 4th Scribe: Antoine Bosselut

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture, first we go over an application of the Hoeffding bound in discrepancy theory, then we go over
basic families of streaming algorithms.

3.1 Set Balancing

Given a matrix A ∈ {0, 1}n×n, we want to find a vector b ∈ {±1}n minimizing ‖Ab‖∞. Recall that for a
vector v ∈ Rn,

‖b‖∞ = max
1≤i≤n

|bi|.

This problem is one of the most basic problems in discrepancy theory. The field of discrepancy theory has
many applications in various areas of computer science including Approximation algorithms, communication
complexity, machine learning and optimization. We refer interested students to [Cha00]. Here, we prove the
following theorem.

Theorem 3.1. Let b be a uniformly random vector with +1 and −1 coordinates. Then,

P
[
‖Ab‖∞ ≤ O(

√
n log n)

]
≥ 1− 1/n.

Thea above bound is the best possible bound if we want a high probability result. However, there is an
efficient algorithm which returns a vector b ∈ {±}n such that ‖Ab‖∞ ≤ O(

√
n) [Spe85; Ban10; LM15].

Proof. Let a1, a2, . . . , an be the rows of A, i.e.,

A =

a1

a2

...

an

Then, for any 1 ≤ i ≤ n,

(Abi) = 〈ai, b〉 =

n∑
j=1

ai,jbj .

Therefore,

E [〈ai, b〉] =

n∑
j=1

E [aij · bj] =

n∑
j=1

ai,jE [bj] = 0,

3-1

3-2 Lecture 3: Streaming Algorithms

where the last equality uses that each bj is zero in expectation. So, all we need to do is to show that 〈ai, b〉
is strongly concentrated around its expectation. We use the Hoeffding inequality to prove this.

Fix some 1 ≤ i ≤ n. First, observe that if ai,j = 0, bj doesn’t matter. For any 1 ≤ j ≤ n let

Xj =

{
bj if ai,j = 1

0 otherwise

Let X = X1 + · · · + Xn. Observe that the distribution of X is similar to a random walk process of
length ‖ai‖. So, similar to the previous lecture we can use the Hoeffding bound to upper bound |X|. For
ε =

√
16‖ai‖1 log(n), we have

P [|X| ≥ ε] ≤ exp

(
− 2ε2∑n

j=1 ai,j(+1− (−1))2

)
= exp

(
− 2ε2

4‖ai‖1

)
= e−2 logn =

1

n2
.

In other words,

P
[
|〈ai, b〉 ≥ 4

√
n log n

]
≤ 1

n2
.

This says that for any 1 ≤ i ≤ n, the i-th coordinate of Ab is at most O(‖ai‖1 log n) with a very high
probability.

Now, let Ei be an event that indicates < ai, b >≥
√

4‖ai‖1 log n. We are interested in the event that none of
the Ei’s occur. Unfortunately, we do not know how these events correlate with one another. The only thing
that we know is that each of them occurs with a tiny probability.

The idea is to use the union bound. It says that for any family of events E1, . . . , En,

P [∪ni=1Ei] ≤
n∑
i=1

P [Ei] .

So, in our case,

P [∩¬Ei] = 1− P [∪ni=1Ei] ≥ 1−
n∑
i=1

P [Ei] ≥ 1− 1/n.

In other words, P
[
∀i〈ai, b〉 ≤

√
16n log n

]
≥ 1− 1

n

3.2 Streaming

In the next two weeks we will see several applications of randomization and concentration bounds in algorithm
design. Our first family of applications is in designing streaming algorithms.

Suppose we are given a sequence of objects x1, x2, . . . , xm from a large universe U . We want to design an
algorithm that reads the elements of this sequence one by one and it and answers specific set of queries
related to this sequence. The main restriction is that our algorithm is only allowed to use a small amount
of memory, ideally only poly-logarithmic in the length of the sequence and the size of the universe U .

In this lecture and the next we study perhaps the simplest set of queries one might ask about the sequence
namely the 0-th and the second moments. Also, for the sake of simplicity we assume that U = [n] is simply
the set of the integers from 0, 1, . . . , n− 1. Let F0 be the number of distinct elements in the sequence. Also,
for any k ≥ 1 let Fk =

∑
i{#xj = i}k be the k-th moment of the number of times that each element occurs

in the sequence. In particular, F∞ is the maximum number of times an element appears in the sequence.
The following theorems are proved in [AMS96].

Lecture 3: Streaming Algorithms 3-3

Theorem 3.2. For any sequence x1, . . . , xm and ε, δ > 0, F0 and F2 can be approximated within a 1 ± ε
factor with probability 1− δ in space O

(
(log n+ logm) log 1

δ /ε
2
)
.

Although the F0 and F2 can be approximated with only logarithmic amount of memory, these are the only
special cases. For all higher moments we need at least a polynomial amount of memory in n even to return
approximate answers.

Theorem 3.3 ([AMS96]). If a (randomized) algorithm approximates F∞ within 1± .2 factor with probability
2
3 , it needs at least Ω(min(m,n)) memory.

Theorem 3.4 ([IW05]). For finite k ≥ 2 the best memory one needs to approximate Fk is Θ(n1−
2
k)

In the rest of this lecture we prove the F0 case of Theorem 3.2. In the next lecture we prove the F2 case.
So, fix a sequence x1, . . . , xm. We want to design an algorithm that maintain a sketch of the sequence such
that at the end of the input it can return the number of distinct elements within a 1 ± ε factor with 1 − δ
probability. Note that our algorithm needs to work in the worst case. That is we cannot assume the sequence
x1, . . . , xm is a random sequence generated from the set [n]. In fact, if this was a random sequence, for a
large enough n, with high probability all elements of the sequence were disjoint and we could simply return
m as the answer. The latter fact simply follows from the birthday paradox that we studied in the last lecture.

First Attempt. Consider the following simple algorithm. Choose each element of the sequence with

probability proportional to log(n)
ε2m and return the number of distinct element in the sampled subsequence

time ε2m/ log(n). In other words, we want to reduce our “big data” problem to a small problem that we
can solve exactly with the limited available memory. Unfortunately, this simple idea fails for the following
adversarially chosen sequence: 1, 1, . . . , 1︸ ︷︷ ︸

m−k times

, 2, 3, . . . , k− 1. For such a sequence, with high probability we only

see 1’s in the sample.

Idea. Let us first solve a simpler problem. Suppose we are given an integer k; if F0 < k we have to return
no and if F0 > 2k we have to return yes. For all values of F0 we can return yes/no arbitrarily. If we can
solve this problem using a small amount of memory that we can use it to estimate F0 simply by running the
procedure simultaneously for all powers of 2 which are less than n. This would give a 2-approximation. To
get the error probability down to 1 + ε we need to distinguish the cases F0 < k and F0 > (1 + ε)k which can
be done by similar ideas.

Let 2k ≤ B ≤ 4k be an integer. Let H = {h : [n]→ [B]} be the family of all functions that map [n] to [B].
Observe that a uniformly random function h ∼ H maps each integer in [n] to a uniformly and independently
random integer in [B]. Now, consider the following algorithm: Return yes if there is an xi in the sequence
for which h(xi) = 0 and return no otherwise. Let us analyze this algorithm. Since h(xi) is chosen uniformly
at random, for each i,

Ph∼H [h(xi) = 0] =
1

B

Since there are F0 distinct number in the sequence and the value of h(.) for each of these numbers is chosen
independently,

Ph∼H [∀i : h(xi) 6= 0] = (1− 1

B
)F0 .

Therefore,

Ph∼H [∃i : h(xi) = 0] = 1− (1− 1

B
)F0 .

Now, let us consider the two cases F0 < k and F0 > 2k. We use p1 to denote Ph∼H [∃i : h(xi) = 0] in case 1
and p2 for the similar quantity in case 2.

3-4 Lecture 3: Streaming Algorithms

Case 1: F0 < k. In this case we can write, p1 ≤ (1− 1
B)k ≈ 1− e− 1

2 if B = 2k

Case 2: F0 > 2k However, here we have p2 ≥ (1− 1
B)2k ≈ 1− e−1 if B = 2k

Observe that p2 − p1 ≥ 0.2, i.e., there is a constant gap between two cases. Of course, we may be unlucky
and even if F0 < k we get a number xi in the sequence for which h(xi) = 0, so we return yes incorrectly. So,
the naive algorithm mentioned above fails.

To get around this issue all we need to do is to estimate Ph∼H [∃i : h(xi) = 0] with an error better than
α = |(1 − e−1/2) − (1 − 1/e)|. By the Hoeffding bound all we need is O(log(1/δ)/α2) independent samples
of p. So, here is the modified algorithm: Let r = O(log(1/δ)/α2). Let h1, . . . , hr : [n] → [B] be r functions
chosen independently from H. For each hi let Yi = I [∃j : h(xj) = 0]. If 1

r

∑
i Yi is closer to (1−1/B)k return

no and otherwise return yes.

By the Hoeffding bound, the above algorithm returns the correct answer with probability 1− δ. Since α is
constant we only need O(log(1/δ) hash functions. The only caveat is that we need a large amount of space
to store the hash functions h1, . . . , hr. Since H has Bn many functions we need O(n log(B)) memory to store
any function hi. Note that hi’s cannot be any predefined hash function as you typically see in programming
languages. Such a function may map all of the numbers x1, . . . , xm in the sequence to the same number in
[B] in the worst case. Indeed randomness is necessary for the algorithm to work in the worst case. It turns
out most of the above analysis can be done even if H is not the family of all functions h : [n] → [B]. More
precisely most of the analysis works out even if h(i) for integers i ∈ [n] is not truly independent but just
pairwise independent. In the rest of this lecture we prove this statement. In the next lecture we see how
we can construct a pairwise independent hash function using a family H with only n2 many functions. A
random function from such a family can be described in O(log n) bits.

3.2.1 Pairwise Independent Hash Functions

As before, let H = {h : [n]→ [B]} We say H is a family of pairwise independent hash functions if

∀x 6= y; c, d ∈ [B],P [h(x) = c, h(y) = d] =
1

B2
.

Let H∗ be a family of pairwise independent hash functions. Without loss of generality assume that the first
F0 numbers of the sequence are all distinct, i.e., x1, x2, ..., xF0

are distinct integers in [n]. This is a valid
assumption because our algorithm is invariant under the ordering of the elements of the sequence. Now, let
us consider the two cases.

Case 1: F0 < k. We use the union bound to upper bound p1.

p1 = Ph∼H∗

[
F0⋃
i=1

h(xi) = 0

]
≤

F0∑
i

Ph∼H∗ [h(xi) = 0] =
F0

B
≤ k

B

In the last equality we use that since H is a pairwise independent hash function, for any integer i,
P [h(i) = 0] = 1/B, and in the last inequality we use that F0 < k.

Case 2: F0 > 2k. In this case we need to lower bound p and show that it has a constant gap with k/B.
First, recall the inclusion-exclusion principle, for any set of events, E1, . . . , En,

P [∪iEi] =
∑
i

P [Ei]−
∑
i<j

P [Ei ∩ Ej] + . . .

REFERENCES 3-5

If we cut the RHS at odd terms we get upper bound on the LHS and if we cut it at even terms we get
a lower bound; in particular, we can write∑

i

P [Ei]−
∑
i<j

P [Ei ∩ Ej] ≤ P [∪iEi] ≤
∑
i

P [Ei]

Using the left inequality we can write,

p2 = Ph∼H∗

[
∪F0
i=1h(xi) = 0

]
≥ Ph∼H∗

[
∪2ki=1h(xi) = 0

]
≥

F0∑
i

Ph∼H∗ [h(xi) = 0]−
∑

1≤i<j≤F0

P [h(xi) = h(xj) = 0]

=
2k

B
−
(
2k
2

)
B2

where the first inequality uses that F0 > 2k and the equality uses that H∗ is a family of pairwise
independent hash functions.

Therefore,

p2 − p1 ≥
(

2k

B
− k(2k − 1)

B2

)
− k

B
≥ k

B
(1− 2k/B) ≥ 1/8,

for B = 4k. Since there is a constant gap between p1 and p2, it is sufficient to use r = O(log 1
δ /α

2) for
α = 1/8 independent functions chosen from H∗ to estimate Ph∼H∗ [existsi : h(xi) = 0] within 1/16 additive
error. Since we need O(log n) bits to store each function from H∗ with a O(log(1/δ) log(n)) space we
can test if F0 < k or F0 > 2k. Using similar ideas we can test if F0 < k or F0 > (1 + ε)k in space
O(log(1/δ) log(n)/ε2). Since there are log1+ε n possibilities for k, we can estimate F0 within factor 1 + ε
using only O(log(1/δ) log(n) log1+ε(n)/ε2. Note that the space dependency mentioned in Theorem 3.2 is
slightly better than this. The reason is that [AMS] uses a different idea to estimate F0 known as minhash.

References

[AMS96] N. Alon, Y. Matias, and M. Szegedy. “The space complexity of approximating the frequency
moments”. In: STOCw. ACM. 1996, pp. 20–29 (cit. on pp. 3-2, 3-3).

[Ban10] N. Bansal. “Constructive algorithms for discrepancy minimization”. In: FOCS. IEEE. 2010, pp. 3–
10 (cit. on p. 3-1).

[Cha00] B. Chazelle. The discrepancy method: randomness and complexity. Cambridge University Press,
2000 (cit. on p. 3-1).

[IW05] P. Indyk and D. Woodruff. “Optimal approximations of the frequency moments of data streams”.
In: STOC. ACM. 2005, pp. 202–208 (cit. on p. 3-3).

[LM15] S. Lovett and R. Meka. “Constructive Discrepancy Minimization by Walking on the Edges”. In:
SIAM Journal on Computing 44.5 (2015), pp. 1573–1582 (cit. on p. 3-1).

[Spe85] J. Spencer. “Six standard deviations suffice”. In: Transactions of the American Mathematical
Society 289.2 (1985), pp. 679–706 (cit. on p. 3-1).

	Set Balancing
	Streaming
	Pairwise Independent Hash Functions

