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Last lecture we studied duality of linear programs (LP), specifically how to construct the dual, the relation
between the optimum of an LP and its dual, and some duality applications. In this lecture, we will talk
about another application of duality to prove one of the theorems in combinatorics so called Maximum
Flow-Minimum Cut Problem. The theorem roughly says that in any graph, the value of maximum flow is
equal to capacity of minimum cut.

17.1 Maximum Flow

Let G be a directed graph, assume that c : E → R+ is the cost per capacity. The maximum flow problem is
defined as, given two specific vertices namely source s and sink t, the objective is to find flows for each path
that obeys capacities along the path and maximizes the net flow from s to t. To get a better understanding
of the problem lets examine the following graph. There are three different paths on the graph in Figure 17.1
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Figure 17.1: Maximum Flow on an example graph

and capacities on each edge are given with values typed in red color. We can send a flow of f1 = 2 from path
1 and send another flow of f2 = 1.5 from path 2. This configuration fully utilizes the capacities of some edges
along the paths with net flow of

∑
i fi = 3.5, however it is not the maximum flow. To maximize the flow we

can send another flow f3 = 0.5 from path 3 without violating any capacity constraints, which maximizes the
net flow from s to t as

∑
i fi = 4.0. To justify this is the maximum flow, we can divide graph into two sets

as the source and the rest of the graph. We can consider this division as a cut separating the source from
the sink. The summation of capacities of edges crossing this cut from the source side the destination side
yields is 4. So, the maximum possible flow from s to t is at most 4. In this lecture we see that the maximum
flow from s to t is equal to the smallest cut separating s from t with minimum sum of capacities. This is
what Maximum Flow-Minimum Cut Theorem states.
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17.1.1 LP Formulations for Maximum Flow

Before delve into the Maximum Flow-Minimum Cut Theorem, lets focus on the Maximum Flow problem,
specifically, how to find the maximum flow in any graph. For this purpose, we can cast the problem as a
linear program (LP). First, we define the notation given in Figure 17.2, where for a node v we label the
incoming edges as d−(v) and the outgoing ones as d+(v).
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Figure 17.2: Notation on incoming and outgoing edges

First of all, because of the capacity constraints on each edge we need whole flow over an edge to be at most
the capacity of the edge. Secondly, to satisfy physics of the flow, we need to have a conservation of flow
equation, specifically, over all nodes except s and t, summation of all incoming flows has to be equal to
summation of all outgoing flows. Now we can write an LP to solve for the maximum flow as follows:

max
∑
e

xe

s.t. 0 ≤ xe ≤ ce ∀e∑
e∈d−(v)

xe =
∑

e∈d+(v)

xe ∀v ∈ V \ {s, t}
(17.1)

Remark 17.1. This is not necessarily the best algorithm to find the maximum flow and there are many other
combinatorial algorithms for this task. One significant advantage of LP is to ease of posing the problem and
once the problem is formulate by an LP, there are many of-the-shelf LP solvers to get the optimum solution.
So the personal effort of this approach is minimum.

Remark 17.2. Once the LP is formulated, it is easier to extend the problem to more complicated cases. For
instance, one can try to find a maximum flow with the smallest cost over the network.

There is another way to write the maximum flow problem using an LP (with exponentially many constraints).
We can do this using a nonnegative variable corresponding to each path connecting s to t. Let P be the set
of all such paths. Then,

max
∑
P∈P

fP

s.t.
∑

P :e∈P
fP ≤ ce ∀e

fP ≥ 0 ∀p ∈ P

(17.2)

Basically, this formulation assigns a nonnegative amount of flow to each path as fP , and solves for these
values. Capacity constraints are imposed on the utilization of an edge by all paths which includes that edge.
Formulations (17.1) and (17.2) are equivalent. This is a nice exercise. But formulation (17.2) can be harder
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to solve, since number of variables are the all possible paths from s to t, and there may be exponential
number of these paths. Although we do not describe here, but in principle one can use the ellipsoid method
to find an optimum solution of the second LP.

The reason that we describe (17.1) is that it has a an easier to understand dual. Writing the dual for the
formulation (17.2) yields the following:

min
∑
e

ceye,

s.t.
∑
e∈P

ye ≥ 1 ∀P,

ye ≥ 0 ∀e.

(17.3)

The primal is certainly feasible (we can let fP = 0 for all P ∈ P) and the dual is also feasible (we can let
ye = 1 for all edges), so strong duality hols. Thus objective value of the primal problem is equal to objective
of the dual problem.

17.2 Minimum Cut

Before we talk about the minimum cut problem let’s start with providing a definition for s− t cut.

Definition 17.3. For a set S ⊆ V , we say (S, S) is an s− t cut if s ∈ S and t /∈ S
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Figure 17.3: s− t cut illustration

The capacity of an s− t cut (S, S) is defined as follows:

c(S, S) :=
∑
(u,v)

u∈S,v/∈S

cu,v (17.4)

In the minimum s− t cut problem we want to find the an s− t cut with minimum capacity,

min
S is s−t cut

c(S, S).

The following theorem is the main result that we prove in this lecture.

Theorem 17.4 (Maximum-flow Minimum-cut theorem). For any graph G, and any two vertices s, t ∈ V ,
the size of maximum s− t flow is equal to size of the minimum s− t cut.
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Proof. We already know that maximum flow is the solution of LP (17.1) which is equivalent to LP (17.2).
Also we know from the strong duality that primal ((17.2)) cost is equal to dual ((17.3)). Therefore all we
need to show is that the minimum cut is always equal to this dual. Let y∗ be an optimum solution for the
dual problem. So, all we need to show is that∑

cey
∗
e = min

s−t cut
c(S, S). (17.5)

We prove this equality in two steps. First, we show that∑
cey
∗
e ≤ min

s−t cut
c(S, S). (17.6)

Remember we have y∗ is an optimizer of a minimization problem. Therefore, it is enough to show that for
any s− t cut (S, S), there exists a vector y such that y is a feasible LP solution and that∑

ceye ≤ c(S, S). (17.7)

So, fix an s− t cut (S, S). For any edge e we let,

ye =

{
1 if e ∈ (S, S)
0 otherwise

(17.8)

Observe that the above vector is a feasible solution to LP 17.3; this is because any path between s and t has
to cross (S, S) at least ones. Since y is equal to 1 for any edge in that (directed) cut, the sum of ye’s along
any s− t path is at least 1. So, it remains to verify (17.7). Observe that∑

e

ceye =
∑

u∼v:u∈S,v/∈S
cu,vyu,v =

∑
u∼v:u∈S,v/∈S

cu,v = c(S, S),

as desired. This proves (17.6).

So, it remains to prove ∑
cey
∗
e ≥ min

s−t cut
c(S, S) (17.9)

Since the RHS is a minimization problem it is enough to prove the following: Given a feasible vector y, there
exists an s− t cut (S, S) such that ∑

e

ceye ≥ min
s−t cut

c(S, S). (17.10)

Fix a feasible solution y of the dual. The goal is to round y into an s− t cut (S, S).. For any edge e let ye
be the length of e. For any vertex v ∈ V , let yv be the shortest path distance from s to v with respect to
the aforementioned lengths. Observe that, since y is a feasible LP solution, we have ys = 0 and yt = 1.

Having {yv}’s we just need to run a clustering algorithm. We choose a threshold r and we split the vertices
into a set S of those at distance at most r from s and the set S of vertices at distance more than r from
S. This idea is reminiscent of the spectral clustering algorithm. Except in this case we are running the
clustering algorithm with respect to the LP solution as opposed to the second eigenvector of the graph. As
a sanity check, observe that, if y is an integral vector, then for a set S of vertices we have yv = 0 and for all
vertex v /∈ S we have yv = 1. So, the above algorithm correctly recovers an s− t cut of capacity

∑
e ceye.

For a threshold r sampled from a uniform distribution U(0, 1), let Sr = {v : yv ≤ r}, We claim that

Er

[
c(Sr, Sr)

]
≤
∑
e

ceye. (17.11)

Note that a proof of the above equation directly implies (17.10) which completes the proof of Theorem 17.4.
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We say an edge (u, v) is cut by (Sr, Sr) if u ∈ Sr and v /∈ Sr. Observe that whenever (u, v) is cut we have to
pay ce in the LHS. So, by linearity of expectation, to prove the above inequality it is enough to show that
any edge (u, v) is cut with probability at most yu,v.

So, let us study the probability that an edge (u, v) is cut. Figure 17.4 gives the yv values of all vertices of G
sorted in an increasing order. Consider an edge (u, v) where yu = 0.35 and yv = 0.45. This edge is cut when
the threshold r lies in the interval (0.35, 0.45) which happens with probability 0.1. In general edge u, v is
cut with probability max{yv − yu, 0}. But the latter is at most yu,v. This is because one option to go from
s to v is to first go to u and then go from to v using edge (u, v). Therefore,

yv ≤ yu + yu,v.

s
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u v

Figure 17.4: Illustration of the probability of that (u, v) is cut.

Consequently, by linearity of expectation we have

Er

[
c(Sr, Sr)

]
=
∑
(u,v)

cu,v P
[
(u, v) is cut

]
=
∑
(u,v)

cu,v P
[
yu ≤ r ≤ yv

]
=
∑
(u,v)

cu,v

(
yv − yu

)
≤
∑
(u,v)

cu,v yu,v

(17.12)

This proves (17.11), which implies (17.10). Putting (17.10) and (17.7) together implies (17.5). This completes
the proof of Theorem 17.4.

Remark 17.5. An interesting thing to note here is that, given y, we can give a distribution over s− t cuts
such that the expected capacity of these cuts is less than or equal to

∑
ceye. Now, suppose we construct the

set of s− t cuts with the optimal value i.e. y∗e , we already know that there are no cuts with a value less than∑
cey
∗
e , so in fact, all of the cuts in this distribution must be minimum s− t cuts.
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