
CSE 521: Design and Analysis of Algorithms I Spring 2016

Lecture 15: Introduction to Linear Programming
Lecturer: Shayan Oveis Gharan May 16th Scribe: Daniel Dueri

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Linear systems are easiest class of optimization problems. Roughly speaking, any linear system of equations
can be solved efficiently. The easiest examples are linear systems of equalities. This systems can be solved
by matrix inversion. Given a (full rank) matrix A, to solve Ax = b, it is enough to compute A−1b. In linear
programming we study system of linear inequalities.

In the first few lectures we study linear systems of inequalities, also known as Linear Programming (LP).
We also allow for a linear cost (or objective) function. LPs can be used to solve problems in a wide range of
disciplines from engineering to nutrition and the stock market, At some point it was estimated that half of
all computational tasks in the world correspond to solving linear programs.

A general LP can be formalized as follows:

min
x
〈c, x〉

s.t. Ax ≤ b,
(15.1)

where x ∈ Rn is represents the variables, c ∈ Rn defines the objective function, and A ∈ Rm×n and b ∈ Rm
define the constraints. The above form is fairly general; one can model various types of constraints in this
form. For example, a constraint 〈a1, x〉 ≥ b1 can be written as 〈−a1, x〉 ≤ −b1. Or, a constraint 〈a1, x〉 = b1
can be written as 〈a1, x〉 ≤ b1 and 〈−a1, x〉 ≤ −b1.

The objective function can be viewed as a hyperplane in Rn with normal vector c. Further, one can express
the constraint matrix A as a series of row vectors:

A =

aT1
aT2
...
aTm

 .

When viewed from this perspective, it is easy to see the constraint set aTi x ≤ bi, i ∈ {1, 2, . . . ,m} as the
intersection of finitely many half-spaces. The feasible set an LP is called a polyhedron. Thus, the solution
will always be one of the following three cases shown in Figure 15.1.

There are many well known ways of solving LPs, but two of the most well known and used are Interior Point
Methods (IPMs) and the simplex method. The simplex method is based on a very geometrically intuitive
idea: start at a vertex of the domain of x and move to an adjacent vertex with lower objective - continue
until an optimal solution is reached. Theoretically, the worst case time complexity of the simplex method is
exponential; however, the simplex method is very fast in practice, and toolboxes such as CPLEX and Gurobi
can solve very large LPs (millions of solution variables) in a few seconds. Interior point methods have better
theoretical bounds; roughly speaking, using an interior point method, one can solve a general linear program
with n variables by solving Õ(

√
n) many systems of linear equalities.

15-1

15-2 Lecture 15: Introduction to Linear Programming

a1

a2

(a) Infeasible domain of x: No so-
lution.

a1

a2

a3

a4

c

(b) Unbounded domain of
x: x∗ = ±∞

a1

a2

a3

a4

a5

cx∗

(c) Closed, bounded and compact do-
main of x: at least one vertex of the
domain of x is in the solution set x∗.

Figure 15.1: The possible domains of the solution variable x for an LP, along with the solution.

15.1 Linear Modeling

In the rest of this lecture we study several applications of linear programming in the real world. In many of
the real world applications one models a given problem by a linear system and the uses linear programming
solvers to find an optimal solution of the linear system. The optimal solution can be seen as an approximate
solution of the problem at hand.

15.1.1 Example 1: Diet Problem

Consider the problem of finding an optimal combination of meat, vegetables, fruits, and dairy products that
has less than 1,500 calories and costs less than $20 a day subject to maximizing our daily happiness. Let
cm, cv, cf , cd be the calories per gram of each food group, pm, pv, pf , pd be the price per gram of each
food group in cents, and hp, hv, hf , hd be the happiness derived from eating a gram of each food group.
Assume that any happiness derived from eating a specific food group is completely independent of other
food groups, that is, the happiness derived from one group does not affect the happiness derived from any
other food group. Then, the following optimization can be solved to obtain the optimal meal combination
that maximizes our daily happiness:

max hmxm + hvxv + hfxf + hdxd

s.t. cmxm + cvxv + cfxf + cdxd ≤ 1500,

pmxm + pvxv + pfxf + pdxd ≤ 2000

xm, xv, xf , xd ≥ 0.

(15.2)

where xm, xv, xf , and xd are the quantities of each food group in grams that we need to consume in a day.

15.1.2 Example 2: Support Vector Machines

Suppose one has images xi ∈ Rn and wishes to separate those which contain a car from those without a car.
One possible solution is to find a separating hyperplane such that all images with a car lie on one side of the
hyperplane and those without a car lie on the other side of the hyperplane. One can find such a hyperplane
(if it exists) by solving an LP. Let v ∈ Rn be the unknown normal vector corresponding to the hyperplane,

Lecture 15: Introduction to Linear Programming 15-3

then the following LP finds the minimum error separating hyperplane:

min
ε

∑
i

|εi|

s.t. 〈v, xi〉 ≥ 1

2
+ εi, ∀ i w/ a car,

〈v, xi〉 ≤ −1

2
+ εi, ∀ i w/o a car.

(15.3)

Note that the objective function is not a linear function, but one can use linear programming to minimize
the objective. See the first problem of PS6.

15.2 Decision Theory

In the field of decision theory, an agent is faced with choosing an action (or a sequences of actions) aimed
at optimizing the final reward. In many cases, the reward is an output of a stochastic process; so an agent
tries to maximize the expected from his actions. A general model for modeling decisions in a stochastic
enviroment is a Markov Decision Process (MDP).

MDPs are one of the basic tools in many areas of computer science including artificial intelligence and
robotics. Let us start by a motivating example: Consider a cleaning robot; at each time step the robot is
located at a specific position in the room and it has a set of possible actions. It can move to a neighboring
location, it can clean the current spot, it can test if the current spot is clean, or it can do nothing. Each
of these actions has a reward (or a cost). So, the goal is to choose a sequence of actions to maximize the
expected reward.

Definition 15.1. A Markov Decision Process can be seen as a generalization of a Markov Chain where in
each state an action is taken, and the next state is chosen random as a function of the chosen action. There
is In particular, if we are at state i, and we take action a, we move to state j with probability Pa(i, j). In
such a case the agent immediately receives a reward Ra(i, j)

Most importantly, this process is memory-less, i.e., similar to Markov Chain, the evolution of the system is
only a function of the current state, and it has nothing to do with the past.

The objective of an MDP is to design a policy that for each state i and any time t gives an action at(i) such
that the expected reward over a given time finite horizon T is maximized. We use Dynamic programming
to find the optimal policy corresponding to a given MDP with finite horizon T .

For an integer 0 ≤ t ≤ T , let Vt(i) denote the expected reward of the optimal policy if it starts at time t
from state i. Note that VT (i) = 0 for every state i, since no further action can be taken, so no more rewards
can be received. For any state i and time 0 ≤ t ≤ T , Vt(i) can be described as:

Vt(i) = max
a

∑
j

Pa(i, j)
(
Ra(i, j) + Vt+1(j)

) . (15.4)

The latter is known as the Bellman operator. The Bellman operator F receives a vector V and returns a
vector F (V) where for each i,

F (V)i = max
a

∑
j

Pa(i, j)
(
Ra(i, j) + Vt+1(j)

) .

15-4 Lecture 15: Introduction to Linear Programming

To obtain V0(i) all we need to do is to apply the Bellman operator T times to the all zeros vector:

V0 = F (V1) = F (F (V2)) = · · · = FT (0).

The optimal policy can be determined for each state and time by choosing the action corresponding to the
maximum value. In particular,

at(i) = argmaxa

∑
j

Pa(i, j)
(
Ra(i, j) + Vt+1(j)

)
Observe that the running time of the above algorithm is O(T · n2) because it takes O(n2) to compute F (V)
for a given vector V . Unfortunately, as T gets larger the running time of the algorithm gets larger and
larger, in particular, we cannot run the above algorithm for T =∞ which is a specially important case. To
motivate this case recall that the cleaning robot indeed never turns of.

To study an MDP over infinite horizon first we need to make sure that the sum of the rewards are bounded;
otherwise any arbitrary policy would have an infinite reward. To model that we use a discount factor
0 < γ < 1. We assume that the value of reward at time t is scaled by γt. This ensures that the expectation
of the reward is bounded even as t → ∞. For example, you can think of γ as the infliation rate if you are
modeling the stock market.

With this notation, our goal is to find the optimal policy with the largest infinite horizon discounted reward.
As we will see, the optimal policy is time-homogeneous, i.e., assigns a fixed action a(i) to any state i and
a(i) is independent of t.

Now, we can use linear programming to find the optimal policy.

min
∑
i

V (i)

s.t. V (i) ≥ max
a

∑
j

Pa(i, j)
(
Ra(i, j) + γV (j)

) , ∀ i.
(15.5)

Theorem 15.2. The optimal expected reward V ∗ corresponds the optimal solution of (15.5).

Proof. Let Fγ(V) be the Bellman operator corresponding to the MDP with discounted reward γ. In partic-
ular, for any i,

F (V)i = max
a

∑
j

Pa(i, j)
(
Ra(i, j) + γV (j)

) .

Note that since we multiply V (j) with γ any reward received after the transition to j will be scaled by γ at
the current time step. So, the above operator indeed computes the discounted reward

To prove the theorem we use the following two facts:

Fact 1. V ∗ ≥ Fγ(V ∗), i.e. V ∗ is feasible of the LP. This is because for any state i, we must haveV ∗(i) =
Fγ(V ∗)i; otherwise, we can choose a better action at state i to increase V ∗. But that means that V ∗ is not
the optimal reward which is a contradiction.

Lecture 15: Introduction to Linear Programming 15-5

Fact 2. For any vectors U, V where U ≥ V , we have Fγ(U) ≥ Fγ(V). This follows from the observation
that Fγ(V) is a monotone function.

Let V be the optimal solution of the LP. Since V is feasible, we have V ≥ Fγ(V). Using Fact 2, we can write

Fγ(V) ≥ Fγ(Fγ(V)).

Continuing this we have
V ≥ Fγ(V) ≥ Fγ(Fγ(V)) · · · ≥ F∞γ (V) = V ∗.

So, V ∗ must be the optimal solution to (15.5).

We emphasize that the above linear program is not the fastest way that we know to solve a given MDP.
There are iterative methods that outperform linear programming. However, the reason that we focus on
linear programming on these lectures is that for many optimization tasks linear programming can be used
as a central tool to find an optimal or an approximate solution. Since very fast linear programming solvers
are available in the world, one can always use this tool as a first order approximation to a sophisticated
optimization problem. If the solvers find a good solution, we can try to optimize our approach using more
sophisticated techniques.

	Linear Modeling
	Example 1: Diet Problem
	Example 2: Support Vector Machines

	Decision Theory

