
CSE 521: Design and Analysis of Algorithms I Spring 2016

Lecture 10: Applications of Low Rank Approximation in Optimization
Lecturer: Shayan Oveis Gharan April 27th Scribe:

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In this lecture we describe applications of low rank approximation in optimization. Firstly, let us give a
short overview of the last lecture. We defined the operator norm of a matrix ‖.‖2 and the Frobenius norm
‖.‖F and we showed that the best rank k approximation of a given matrix M is the matrix that chooses
singular vectors corresponding to the largest k singular value of M .

Let us give a geometric view of SVD and low rank approximation. Let M =
∑n

i=1 λiviv
T
i be a symmetric

matrix. Geometrically, we can view M as follows. Suppose we write the coordinate of each point in terms
of the basis vectors v1, . . . , vn. The circle in at the left of Figure 10.1 represents points of norm 1. If
M = 1.7v1vT1 + 0.75v2v

T
2 , the points on this circle map to the ellipse at the right. Note that since λ1 >> λ2,

points which have a larger inner product with v1 gets stretched. The operator norm of such a M is the
longest amount that a point gets stretched under this linear map. So, in our example, a point along the v1
direction gets stretched by 1.7 factor.

−1 1

−1

1

v1

v2

−1 1

−1

1

v1

v2

Figure 10.1: Consider a matrix M = 1.7v1v
T
1 + 0.75v2v

T
2 . This matrix maps the points (at distance 1 of the

origin) on the left circle to the ellipse in the right.

In Figure 10.2, we can see how a nonsymmetric matrix act. Say M = 1.7u1v
T
1 +0.75u2v

T
2 and 〈ui, vi〉 =

√
2/2.

Note that a singular value of a nonsymmetric matrix satisfies the following identity:

Mvi = σiui.

So, in this case we get a rotated ellipse and the rotation depends on the inner products of ui, vi’s.

When we study low rank approximation of matrices, we are trying to approximate the above linear maps
with a simpler mapping. For example, if we do a rank 1 approximation for the mappings in Figure 10.1
and Figure 10.2, we should only choose 1.7v1v

T
1 and 1.7u1v

T
1 respectively. With such a rank-1 mapping any

point will be projected along v1 and the projection value will be stretched by 1.7 factor. In particular, if we
consider points which have 0 projection on v1, they map to 0. The latter corresponds to the largest possible
error in this rank-1 approximation.

10-1

10-2 Lecture 10: Applications of Low Rank Approximation in Optimization

−1 1

−1

1

v1

v2

−1 1

−1

1

v1

v2

u1u2

Figure 10.2: Consider a matrix M = 1.7u1v
T
1 + 0.75u2v

T
2 . This matrix maps the points (at distance 1 of the

origin) on the left circle to the rotated ellipse in the right.

Other Norms. Low rank approximation can be also studied for other families of norms on matrices. A
famous one is the weighted Frobenius norm,

‖M‖WF =
∑
i,j

Wi,jM
2
i,j .

where Wi,j ≥ 0 for all i, j. Obtaining the best rank k approximation with respect to an arbitrary given W
is an NP-hard problem in general, but it is possible to approximate it if W has low rank [RSW16].

Computation. Computing the SVD of a m × n matrix takes time O(mnmin{m,n}). So it is very time
consuming in practice. Recently, there have been a number of results which manage to approximate the best
rank-k approximation in almost linear time [CW13].

10.1 Applications of Low Rank Approximation in Optimization

In this section we see how one can use low rank approximation of a matrix to design an approximation
algorithm for NP-hard optimization problems. We describe an algorithm for Max-cut, but as we will see the
approach is quite general and can be extended to a wide range of optimization problem.

In an instance of the max-cut problem we are given a graph G = (V,E) and we want to find a set S which
maximizes |E(S, S)|.

Although the min-cut problem can be solved optimally, as we saw in the first lecture, max-cut is an NP-hard
problem. The best approximation algorithm that we know for max-cut is by an algorithm of Goemans and
Williamson [GW95]. They showed that there is a polynomial time algorithm which always return a cut
(T, T) such that

|E(T, T)| ≥ 0.87 max
S
|E(S, S)|.

Let G be a graph with n vertices. It is well known that max-cut can be solved up to very small errors in
dense graphs, i.e., graphs with average degree c · n for some constant c > 0. In this section we describe one
such algorithm which exploits the low rank approximation of the adjacency matrix of G. Recall that the
adjacency matrix of G, A is a symmetric matrix defined as follows:

Ai,j =

{
1 ifi ∼ j
0 otherwise.

Lecture 10: Applications of Low Rank Approximation in Optimization 10-3

We sketch the proof of the following theorem. There is an algorithm that for any given graph G and integer
k > 1 returns a cut (T, T) such that

|E(T, T)| ≥ max
S
|E(S, S)| − n2√

k
,

in time O(n · kk).

So, the above algorithms gives an additive n2/
√
k approximation to the maximum cut. This approximation

factor is useless of the size of the optimum cut is less than n2/
√
k. Note that k is a parameter that we can

use. By choosing a larger value for k, we improve the approximation factor of our algorithm at the cost of
having a slower algorithm. Also, observe that the running time of the algorithm exponentially depends on
k; this is unavoidable because max-cut problem is NP-hard in sparse graphs.

Firstly, we formulate the max-cut problem algebraically. For a set S ⊆ V , let

1S
i =

{
1 if i ∈ S
0 otherwise,

be the indicator vector of the set S. We claim that for any set S ⊆ V ,

|E(S, S)| = 1ST
A1S . (10.1)

To see the above, first observe that for any two vectors x, y,

xTAy =
∑
i,j

xiAi,jyj .

So,

1ST
A1S =

∑
i,j

1S
i Ai,j1

S
j =

∑
i,j

I [i ∈ S] I [i ∼ j] I
[
j ∈ S

]
= |E(S, S)|.

This proves (10.1). In addition, observe that 1S = 1− 1S . Therefore, we can rewrite the max-cut problem
as the following algebraic question:

max
S
|E(S, S)| = max

x∈{0,1}n
xTA(1− x). (10.2)

Now, let us describe the high-level strategy. First, we approximate A by a rank-k matrix Ak and we show
that for any vector x ∈ {0, 1}n,

|xTA(1− x)− xTAk(1− x)| = |xT (A−Ak)(1− x)| ≤ n2/
√
k. (10.3)

This shows that all we need to do is maxx∈{0,1}n x
TAk(1 − x). In the second step we use the fact that Ak

has rank k to solve the latter problem in time O(n · kk).

Step 1. Let A =
∑m

i=1 σiuiv
T
i where σ1 ≥ σ2 ≥ · · · ≥ σm. Note that although A is a symmetric matrix,

we do not use that fact to emphasize the general proof idea. Also, let Ak =
∑k

i=1 σiuiv
T
i . We can write,

|xT (A−Ak)(1− x)| = |〈x, (A−Ak)(1− x)〉|
≤ ‖x‖ · ‖(A−Ak)(1− x)‖2
≤ ‖x‖ · ‖A−Ak‖2 · ‖1− x‖ ≤ nσk+1 (10.4)

10-4 Lecture 10: Applications of Low Rank Approximation in Optimization

The first inequality uses the fact that the inner product of any two vectors is no larger than the product of
their norms and the second inequality follows from the definition of the operator norm. In particular, recall
that

‖A−Ak‖2 = max
y

‖(A−Ak)y‖
‖y‖

⇒ ∀y : ‖(A−Ak)y‖ ≤ ‖A−Ak‖2 · ‖y‖.

Also, note that (10.4) follows from the facts that ‖x‖, ‖1− x‖ ≤
√
n because x, 1− x ∈ {0, 1}n.

To prove (10.3), we need to upper bound σk+1 by n/
√
k. We use the Frobenius norm of A to prove this

inequality. Observe that

σ2
k+1 ≤

σ2
1 + · · ·+ σ2

k+1

k + 1

≤ σ2
1 + · · ·+ σ2

m

k + 1

=
‖A‖2F
k + 1

≤ n2

k + 1
.

The last inequality uses that A ∈ {0, 1}n×n matrix. Putting the above inequality together with (10.4) proves
(10.3).

Step 2. In this step we want to approximate

max
x∈{0,1}n

xTAk(1− x).

First, by the definition of Ak, we can write

xTA(1− x) = xT

(
k∑

i=1

σiuiv
T
i

)
(1− x) =

k∑
i=1

σi〈ui, x〉〈vi, 1− x〉.

So, it is enough to approximate 2k numbers, the inner products of x with all ui, vi’s. Recall that we are
thinking of k as a small number, say 3 or 4. For a set S ⊆ V , let

ui(S) =
∑
j∈S

ui(j),

and let

w(S) =
(
u1(S), v1(S), u2(S), v2(S), . . . , uk(S), vk(S)

)
.

All we need to do is to approximate w(S) vectors and find the one where
∑k

i=1 σiui(S)vi(S) is maximized.
Let ε = O(

√
n/k). For each i, S, we round ui(S) to the nearest multiple of ε and we let ũi(S) be that

approximate value. It is not hard to see that for any set S,∣∣∣∣∣
k∑

i=1

σiui(S)vi(S)−
k∑

i=1

σiũi(S)ṽi(S)

∣∣∣∣∣ ≤ O
(

(ε ·
∑

σi · max
1≤i≤k

{ui(S), vi(S)}
)

= O(n2/
√
k),

where we used that ui(S) ≤ ‖ui‖ · ‖1S‖ ≤
√
n.

So, it is enough to find

max
S

k∑
i=1

σiũi(S)ṽi(S).

REFERENCES 10-5

Now, note that for each i, S, |ũi(S)| ≤
√
n. So, each ũi(S) can take one of 2k possible values (recall

ε = O(
√
n/k). And, the vector

w̃(S) = (ũ1(S), ṽ1(S), . . . , ũk(S), ṽk(S)) ,

can take no more than O(kk) different values. Note that some of these kk possible values may not be
achievable by any of the 2n sets. So, all we need to do is to go over all of these kk possibilities and see if
there is a set S, where w̃(S) is the point we are looking for. The näıve way of doing that takes time which
is exponential in n.

Instead, we can use dynamic programming. Here is the inductive step of the dynamic program. Say

P (j) = {w̃(S) : S ⊆ {1, 2, . . . , j}}

be the set of points attainable with sets which are subsets of [j]. To compute P (j + 1) we need to go over
all vectors in P (j) and add the j + 1 points to them; that leads to a new set points points, say

P ′(j) = {w̃(S ∪ {j + 1}) : S ⊆ {1, 2, . . . , j}}.

We let P (j + 1) = P (j) ∪ P ′(j). Since for each j, |P (j)| ≤ kk the update takes time O(n · kk). At the end
of the day, we compute

max
S:w̃(S)∈P (n)

k∑
i=1

σiũi(S)ṽi(S).

This gives an O(n2/
√
k) additive approximation of the max-cut. The running time of the algorithm is

O(n · kk).

References

[CW13] K. L. Clarkson and D. P. Woodruff. “Low rank approximation and regression in input sparsity
time”. In: STOC. ACM. 2013, pp. 81–90 (cit. on p. 10-2).

[GW95] M. X. Goemans and D. P. Williamson. “Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming”. In: J. ACM 42.6 (Nov. 1995), pp. 1115–
1145 (cit. on p. 10-2).

[RSW16] I. Razenshteyn, Z. Song, and D. P. Woodruff. “Weighted Low Rank Approximations with Provable
Guarantees”. In: STOC. 2016 (cit. on p. 10-2).

	Applications of Low Rank Approximation in Optimization

