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Agenda
• Load balancing using hashing!

- Analysis using bounded independence!

• Implementation of small independence!

• Case studies:!
- Approximate membership!
- Hashing with linear probing!

• Exercise: Space-efficient linear probing
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Prerequisites

• I assume you are familiar with the notions of:!
• a hash table!
• modular arithmetic [and perhaps finite fields]!
• expected value of a random variable
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http://www.daimi.au.dk/~bromille/Notes/un.pdf 

http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf


Load balancing by hashing
• Goal:  

Distribute an unknown, possibly dynamic, set S 
of items approximately evenly to a set of buckets.
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Load balancing by hashing
• Goal:  

Distribute an unknown, possibly dynamic, set S 
of items approximately evenly to a set of buckets.

• Examples: Hash tables, SSDs, distributed key-
value stores, distributed computation, network 
routing, parallel algorithms, …

• Main tool: Random choice of assignment. 
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n items into n buckets
• Assume for now: Items are placed 

uniformly and independently in buckets.!

• What is the probability that k items end up 
in one particular bucket?!

• Use union bound to get an upper bound:
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• What is the probability that k items end up 
in one particular bucket?!

• Use union bound to get an upper bound:
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✓
n

k

◆
n�k < (nk/k!)n�k < 1/k!

Conclusion: Probability of 

having some bucket with k 
items is at most n/k!!

⇒ largest bucket has size 
O(log n/log log n) whp.



n items into r buckets
• Use better bound on binomial coefficients:!

!

• Upper bound, k items in particular bucket:
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n items into r buckets
• Use better bound on binomial coefficients:!

!

• Upper bound, k items in particular bucket:
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✓
n

k

◆
< (en/k)k

X

K✓S, |K|=k

r�k < (en/k)kr�k = (en/kr)k

Conclusion: If k > 2en/r > 2 log r 

the probability of k items in any 

single bucket is < 1/r.



k-independence

• Observation: Proofs only used probabilities of 
events involving k items.

• Consequence: It suffices that the hash function 
used “behaves fully randomly” when 
considering sets of k hash values.
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Definition: A random hash 

function h is k-independent if 

for all choices of distinct x1,…,xk 

the values h(x1),…,h(xk) are 
independent.



k-independence

• Observation: Proofs only used probabilities of 
events involving k items.

• Consequence: It suffices that the hash function 
used “behaves fully randomly” when 
considering sets of k hash values.

• How do you implement k-independent hashing?
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Definition: A random hash 

function h is k-independent if 

for all choices of distinct x1,…,xk 

the values h(x1),…,h(xk) are 
independent.



• Random polynomial degree k-1 hash function  
(assuming key x from field F): 
 

Polynomial hashing

p(x) =
k�1X

i=0

aix
i
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• Random polynomial degree k-1 hash function  
(assuming key x from field F): 
 

Polynomial hashing

p(x) =
k�1X

i=0

aix
i

p(x) = xp

odd

(x2) + p

even

(x2)

8

Map to smaller 
range in any 

“balanced” way
k-independent! 

Why?
• Divide-and-conquer Horner’s rule:  
 
 
Reduces data dependencies!



• For GF(264): Use new CLMUL instruction with 
sparse irreducible polynomial.!
- Time for k-independence ca. 3k ns!

• For GF(p), p=261-1 (Mersenne prime): Use double 
64-bit registers and special code for modulo.!
- Time for k-independence ca. k ns

Implementing field operations
work by Tobias Christiani

9



• For GF(264): Use new CLMUL instruction with 
sparse irreducible polynomial.!
- Time for k-independence ca. 3k ns!

• For GF(p), p=261-1 (Mersenne prime): Use double 
64-bit registers and special code for modulo.!
- Time for k-independence ca. k ns

Implementing field operations
work by Tobias Christiani

9

x%p = (x>>61)+(x&p)



• For GF(264): Use new CLMUL instruction with 
sparse irreducible polynomial.!
- Time for k-independence ca. 3k ns!

• For GF(p), p=261-1 (Mersenne prime): Use double 
64-bit registers and special code for modulo.!
- Time for k-independence ca. k ns

Implementing field operations
work by Tobias Christiani

Fastest known for keys of 61 bits up 
to more than 100-independence
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x%p = (x>>61)+(x&p)



Tomorrow: Double tabulation

Mikkel Thorup on Danish TV
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2-independence
• Degree 1 polynomial: h(x) = (ax+b mod p) mod r

• Property: 2-independent  
                 ⇒ If a≠0: collision probability ≤ 1/r
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2-independence
• Degree 1 polynomial: h(x) = (ax+b mod p) mod r

• Property: 2-independent  
                 ⇒ If a≠0: collision probability ≤ 1/r

• For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.

• Probability of no collisions is ≥ 1 - n2/r.
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Can map to (say) 128-bit “signature” 

with extremely small risk of collision



Storing a set of signatures

• From last slide:  
For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.!

• Suppose r=2n and we store h(S) as a bitmap.

12
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Storing a set of signatures

• From last slide:  
For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.!

• Suppose r=2n and we store h(S) as a bitmap.

12

Allows us to determine if x ∈ S with 

“false positive” error probability 1/2.

0110010110111000110111101010101001100010010111010

Space 2 bits/item



Linear probing

• A simple method for placing a set of items into a 
hash table.!

• No pointers, just keys and vacant space.!

• One of the first hash tables invented, still 
practically important.
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Hashing with linear probing
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Hashing with linear probing



389 km/h 20 km/h



Race car vs golf car

• Linear probing uses a sequential scan and is thus 
cache-friendly.!

• Order of magnitude speed difference between 
sequential and random access!

16



History of linear probing
• First described in 1954.!
• Analyzed in 1962 by D. Knuth, aged 24.  

Assumes hash function h is fully random.!
• Over 30 papers using this assumption.!
• Since 2007:  We know simple, efficient hash 

functions that make linear probing provably 
work!
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Modern proof
• Idea: Link the number of steps used to insert an 

item x to the size of intervals around h(x) being 
“full” of hash values. 

18
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I

Lemma. If insertion of a key x requires k probes,

then there exists an interval I of length at least k

such that h(x) 2 I and L

I
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x

h(x)

I

Lemma. If insertion of a key x requires k probes,

then there exists an interval I of length at least k

such that h(x) 2 I and L

I

� |I|.

Insertion time is at 
most the number of 

“full” intervals 
around h(x)



How many “full” intervals?
• Assume that r = 2n, so we expect  

LI=|I|/2. By Chernoff bounds:  
 

20

Pr[LI > 2E[LI ]] < (e/4)E[LI ]

Chernoff bounds are 
found in books on randomized algorithms 

or e.g.  	


www.cs.uiuc.edu/~jeffe/teaching/algorithms/
notes/11-chernoff.pdf 
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How many “full” intervals?
• Assume that r = 2n, so we expect  

LI=|I|/2. By Chernoff bounds:  
 

• Expected number of full intervals around h(x):  
 

• Assumes that values h(x) are independent! 

20

Pr[LI > 2E[LI ]] < (e/4)E[LI ]

Chernoff bounds are 
found in books on randomized algorithms 

or e.g.  	


www.cs.uiuc.edu/~jeffe/teaching/algorithms/
notes/11-chernoff.pdf 

nX

k=1

(e/4)�k/2k = O(1)<
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With 7-independence

• Fix a particular interval I containing h(x).  
Want to analyze prob. that LI has |I| items.!

• Define:  
 

• Obs:

21

Y

x

=

⇢
1� `(I), if h(x) 2 I

�`(I), otherwise

.

X

x2S

Y
x

= L
I

�E[L
I

] = L
I

� n`(I)

`(I) = Pr[h(y) 2 I]  |I|/2



6th moment tail bound

22

• The first inequality is Markov’s.!

• The 2nd inequality requires that variables Yx 
are 6-independent (and a calculation).

Pr[
X

x2S

Y
x

> |I|/2] = Pr[(
X

x2S

Y
x

)6 > (|I|/2)6]

< E[(
X

x2S

Y
x

)6]/(|I|/2)6

< 512/|I|3



Concluding the argument

• Expected number of full intervals around h(x) is 
bounded by:
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nX

k=1

X

I3h(x),|I|=k

Pr[L
I

� |I|] 
nX

k=1

k(512/k3)

< 512
1X

k=1

1/k2 = O(1)



Concluding the argument
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Concluding the argument

• Expected number of full intervals around h(x) is 
bounded by:
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Insertion time is at most 
the number of “full” 
intervals around h(x)

nX

k=1

X

I3h(x),|I|=k

Pr[L
I

� |I|] 
nX

k=1

k(512/k3)

< 512
1X

k=1

1/k2 = O(1)

Tighter analysis:  
5-independence works  

4-independence does not



Some references

• Patrascu and Thorup: On the k-Independence Required by Linear Probing and Minwise 
Independence.  
http://people.csail.mit.edu/mip/papers/kwise-lb/kwise-lb.pdf (particularly section 1.1)!

• Pagh, Pagh, and Ruzic: Linear probing with 5-wise independence  
http://www.itu.dk/people/pagh/papers/linear-sigest.pdf!

• Thorup: String Hashing for Linear Probing  
https://www.siam.org/proceedings/soda/2009/SODA09_072_thorupm.pdf
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Epilogue: Deterministic hashing

• Java string hashing (signed 32-bit arithmetic):  
  h(a1a2…an) = an + 31 h(a1a2…an-1)

• Collisions:  
- h(Aa) = h(BB) = 2112  (equivalent substrings)  
- h(AaAa) = h(AaBB) = h(BBAa) = h(BBBB) = 2095104 
- …
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Epilogue: Deterministic hashing

• Java string hashing (signed 32-bit arithmetic):  
  h(a1a2…an) = an + 31 h(a1a2…an-1)

• Collisions:  
- h(Aa) = h(BB) = 2112  (equivalent substrings)  
- h(AaAa) = h(AaBB) = h(BBAa) = h(BBBB) = 2095104 
- …

• Recent heuristic hash functions, with focus on 
evaluation time: MurmurHash, CityHash, SipHash.
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(Some) people are starting to care!

• Crosby & Wallach: Denial of Service via Algorithmic 
Complexity Attacks. Usenix Security ’03.!
- Follow-ups: Chaos Communication Congress ’11, ’12.
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(Some) people are starting to care!

• Crosby & Wallach: Denial of Service via Algorithmic 
Complexity Attacks. Usenix Security ’03.!
- Follow-ups: Chaos Communication Congress ’11, ’12.

• Java, C++, C# libraries still use deterministic hashing.!
- Java falls back to BST for long hash chains!

• NEW: Ruby 1.9, Python 3.3, [Perl 5.18] now use random 
hashing [if deterministic hashing fails].
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