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Agenda

Load balancing using hashing

- Analysis using bounded independence
Implementation of small independence

Case studies:
- Approximate membership

- Hashing with linear probing

Exercise: Space-efficient linear probing

2



Prerequisites

* [ assume you are familiar with the notions of:
* a hash table
* modular arithmetic [and perhaps finite fields]

* expected value of a random variable
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of items approximately evenly to a set of buckets.



Load balancing by hashing

* Goal:
Distribute an unknown, possibly dynamic, set S

of items approximately evenly to a set of buckets.

» Examples: Hash tables, SSDs, distributed key-
value stores, distributed computation, network
routing, parallel algorithms, ...



Load balancing by hashing

* Goal:
Distribute an unknown, possibly dynamic, set S
of items approximately evenly to a set of buckets.

» Examples: Hash tables, SSDs, distributed key-
value stores, distributed computation, network
routing, parallel algorithms, ...

* Main tool: Random choice of assignment.



11 items into 1 buckets

* Assume for now: Items are placed
uniformly and independently in buckets.

* What is the probability that k items end up
in one particular bucket?

* Use union bound to get an upper bound:

(Z) n " < (nf/EYnT" < 1/k!
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11 items into 7 buckets

* Assu : 1
Conclusion: Probability of

having some bucket with k SGISH

items is at most 1/ k!
nd up

unifort

e What i
1IN one

— largest bucket has size



1 items into r buckets

e Use better bound on binomial coefficients:

(Z) < (en/k)"

* Upper bound, k items in particular bucket:

Z r—" < (en/k)*r " = (en/kr)"

KCS, |K|=k



1 items into r buckets

8L - Jusion: If k >2en/r>2log 7 glak
the probability of k items in any

sinl bucketis < 1/7.

* Upper bound, k items in particular bucket:

Z r—% < (en/k)"r % = (en/kr)"



k-independence

* Observation: Proofs only used probabilities of
events involving k items.

» Consequence: It suffices that the hash function
used “behaves fully randomly” when
considering sets of k hash values.



k-independence

Definition: A random hash =i
function h is k-independent if

for all choices of distinct x1,...,Xk

the values h(x1),...,/h(xx) are
independent.

ction




k-independence

Definition: A random hash =i
function h is k-independent if

for all choices of distinct x1,...,Xk

the values h(x1),...,/h(xx) are
independent.

ction

» How do you implement k-independent hashing?



Polynomial hashing

» Random polynomial degree k-1 hash function
(assuming key x from field F):

k—1
p(x) = Z a;x"
i=0
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Polynomial hashing

» Random polynomial degree k-1 hash function
(assuming key x from field F):

k-independent! - range in
p(z) = ) aiw 5F 1 anly
Why? i=0 “balanced” way

* Divide-and-conquer Horner’s rule:

Map to smaller

p(x) — L'Podd (xQ) +peven($2)

Reduces data dependencies!



Implementing field operations

work by Tobias Christiani

e For GF(2%4): Use new CLMUL instruction with
sparse irreducible polynomial.

- Time for k-independence ca. 3k ns

* For GF(p), p=2°1-1 (Mersenne prime): Use double
64-bit registers and special code for modulo.

- Time for k-independence ca. k ns
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Implementing field operations

work by Tobias Christiani

e For GF(2%4): Use new CLMUL instruction with
sparse irreducible polynomial.

- Time for k-independence ca. 3k ns

* For GF(p), p=2°1-1 (Mersenne prime): Use double
LS JISTSEIECEN XS0 = (x>>61) + (X&P)

- Time for k-independence ca. k ns

Fastest known for keys of 61 bits up

to more than 100-independence




101

: Double tabulat

Tomorrow

Mikkel Thorup on Danish TV
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2-independence

* Degree 1 polynomial: h(x) = (ax+b mod p) mod r

* Property: 2-independent
= [f a=0: collision probability < 1/7
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2-independence

* Degree 1 polynomial: h(x) = (ax+b mod p) mod r

* Property: 2-independent
= [f a=0: collision probability < 1/7

e Forset S of nn elements, x ¢ S: Pr[h(x) e h(S)| <n/r.
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2-independence

Degree 1 polynomial: h(x) = (ax+b mod p) mod r

Property: 2-independent
= [f a=0: collision probability < 1/7

For set S of n1 elements, x ¢ S: Pr[h(x) e h(S)] <n/r.

Probability of no collisions is > 1 - n?/r.
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2-independence

Degree 1 polynomial: h(x) = (ax+b mod p) mod r

Property: 2-independent
= [f a=0: collision probability < 1/7

For set S of n1 elements, x ¢ S: Pr[h(x) e h(S)] <n/r.

Probability of no collisions is > 1 - n?/r.

Can map to (say) 128-bit “signature”

with extremely small risk of collision




Storing a set of signatures

* From last slide:
For set S of n1 elements, x ¢ S: Pr[h(x) e h(S)] <n/r.

* Suppose r=2n and we store h(S) as a bitmap.

0110010110111000110111101010101001100010010111010
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Storing a set of signatures

 From last slide:
For set S of n1 elements, x ¢ S: Pr[h(x) e h(S)] <n/r.

* Suppose r=2n and we store h(S) as a bitmap.

0110010110111000110111101010101001100010010111010




Storing a set of signatures

 From last slide:
For set S of n1 elements, x ¢ S: Pr[h(x) e h(S)] <n/r.

» Suppose r=2n and we store h(S) as a bitmap.

0110010110111000110111101010101001100010010111010




Linear probing

» A simple method for placing a set of items into a
hash table.

* No pointers, just keys and vacant space.

* One of the first hash tables invented, still
practically important.
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Hashing with linear probing
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Hashing with linear probing

I m)



Hashing with linear probing

> m)




389 km/h




Race car vs golf car

» Linear probing uses a sequential scan and is thus

cache-friendly.

* Order of magnitude speed ditference between
sequential and random access!
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History of linear probing

e First described in 1954.

» Analyzed in 1962 by D. Knuth, aged 24.
Assumes hash function h is fully random.

S TPS o Tope" abbrseING. T D, e, “/0is

| 1‘ ntrcductzon and PatiniEions . upen rédressing is a Vld&lj—used technique

- for keeping . symbol tables,” The nethod was first used in 1954 by Sumuel,, Amdahl,
and Rochme in an assembly program {or the IGHM T0l., An extensive dis ﬂussiou of
the method was given by Peterson in 1957 {1], and frequent references have been
made to it ever since (e.z. Schay and Spruth {2]), Iversca [3}). However, the
tlwing characteristics have apparently never bean exactiy establiszhed, and tndeed
the anthor has heard reports of seversl reputable mathermatieiana whe failea S0
find the solufion after some trial. Tharefore it iz the purpsse of this note to
Indicste one way by whic¢h the soluwion cen be cbfained,

de will use the following abstract nodel f{ou describe the method: ¥ 1le a positive
integer, and we have an srray of i variables X13XgavveyXgs AT Lhe beginning,
0, for 1<£1i &, - '

To "enter the k-th ltem in the tabuie,” %e mean that an integer a, 1s cslculated,
L £ 8y £ N, depending oaly on ihe 1~hm, ané tpe Tollowing process is carried out:




History of linear probing

First described in 1954.

Analyzed in 1962 by D. Knuth, aged 24.
Assumes hash function h is fully random.

Over 30 papers using this assumption.

Since 2007: We know simple, efficient hash
functions that make linear probing provably
work!

17



Modern proof

» Idea: Link the number of steps used to insert an

item x to the size of intervals around h(x) being
“full” of hash values.

a . B A [ 4 ‘ ‘

Notation: L; = |{x € S| h(z) € 1}]
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Modern proof

» Idea: Link the number of steps used to insert an

item x to the size of intervals around h(x) being
“full” of hash values.

" TY. BN B B

Notation: L; = |{x € S | h(z) € 1}
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Lemma. If insertion of a key x requires k probes,
then there exists an interval I of length at least &

such that h(x) € I and Ly > |I|.

h(x)
o 00 ©

0000
E— )




Lemma. If insertion of a key x requires k probes,

then there exists an interval I of length at least &
such that h(x) € I and Ly > |I].

hix)

Insertion time 1s at
most the number of
«full” intervals

around h(x)




How many “tull” intervals?

» Assume that r = 21, so we expect
L=111/2. By Chernoff bounds:

Pr[L; > 2E[L;]] < (e/4)FLr

20
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How many “tull” intervals?

C
e Assume that r =2n, so we expect fgz; 'L°ifr': ‘l’)Our,'(ds are
OOKS on
L=111/2. By Chernoff bounds: randomized algorithms

or e.8.

WWW.cs.uiuc.edy/~i

12192 €du/~jeffe/

PI"[L] > QE[L]” < (6/4) L1} teaching/algorithms/
notes/| |-chernoff.pdf

» Expected number of full intervals around h(x):

< zn:(e/zl)—k/?k — O(1)

* Assumes that values h(x) are independent!

20
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With 7-independence

» Fix a particular interval I containing h(x).
Want to analyze prob. that L; has |1 items.

 Define: ¢(1) = Pr[h(y) € 1] < |1]/2

v _ 1—4(1), if h(x) € I
© | =4(I),  otherwise

» Obs: » 'Y, = L; — E[L;] = L; — n{(])

reS

21



6th moment tail bound

Pr(y Y, > |11/2] =Pr[() Y,)° > (|1]/2)°

reS reS

E[(Y Y.)°/(|11/2)°

x€eS
< 512/|1|?

® The first inequality is Markov’s.

® The 2nd inequality requires that variables Y
are 6-independent (and a calculation).

22



Concluding the argument

* Expected number of full intervals around h(x) is
bounded by:

n

> Y PrlLp>|I]] < ik(&’)m/l@?’)

k=1I3h(z),|I|=k k=1

<512» 1/k* = O(1)
k=1

23



Concluding the argument

* Expected number of full intervals around h(x) is
bounded by:

> 2. PrlLiz|I< ik(mz/ﬁ)

2
Insertion time is at most <ol2 Z 1/k* = O(1)
k1

the number of “full”
intervals around h(x)
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Concluding the argument

* Expected number of full intervals around h(x) is
bounded by:

>, 2. PrlLiz|I< ikz(mz//@?’)

2
Insertion time is at most <ol2 Z 1/k* = O(1)
k—1

the number of “full”

intervals around h(x) Tighter analysis:

5-independence works
M 4-independence does not



Some references

Patrascu and Thorup: On the k-Independence Required by Linear Probing and Minwise

Independence.
http:/ / people.csail.mit.edu/mip / papers / kwise-Ib / kwise-lb.pdf (particularly section 1.1)

Pagh, Pagh, and Ruzic: Linear probing with 5-wise independence
http:/ /www.itu.dk/people/pagh/papers/linear-sigest.pdf

Thorup: String Hashing for Linear Probing
https:/ /www.siam.org/proceedings/soda/2009/SODAQ09_072_thorupm.pdf
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Epilogue: Deterministic hashing

» Java string hashing (signed 32-bit arithmetic):
hW(aias...an) = an + 31 h(awaz. . .an1)

e Collisions:
- h(Aa) = h(BB) = 2112 (equivalent substrings)
- h(AaAa) = h(AaBB) = h(BBAa) = h(BBBB) = 2095104
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Epilogue: Deterministic hashing

» Java string hashing (signed 32-bit arithmetic):
hW(aias...an) = an + 31 h(awaz. . .an1)

e Collisions:
- h(Aa) = h(BB) = 2112 (equivalent substrings)
- h(AaAa) = h(AaBB) = h(BBAa) = h(BBBB) = 2095104

e Recent heuristic hash functions, with focus on
evaluation time: MurmurHash, CityHash, SipHash.
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(Some) people are starting to care!

* Crosby & Wallach: Denial of Service via Algorithmic
Complexity Attacks. Usenix Security ’03.

- Follow-ups: Chaos Communication Congress "11, "12.
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(Some) people are starting to care!

* Crosby & Wallach: Denial of Service via Algorithmic
Complexity Attacks. Usenix Security ’03.

- Follow-ups: Chaos Communication Congress "11, "12.

* Java, C++, C# libraries still use deterministic hashing.

- Java falls back to BST for long hash chains!

* NEW: Ruby 1.9, Python 3.3, [Perl 5.18] now use random
hashing [if deterministic hashing fails].
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Exercise: Space-efficient linear probing

Rasmus Pagh
July 13, 2014

Following an idea of Cleary, we will see how to save space in a linear probing hash table storing a size-n
set § C U that is “not too small” compared to U. Let €, > 0 be constants such that (1+4d)n and log,(1/¢)
are integer. In particular let r = (1 + §)n denote the hash table size, and suppose that U = {1,...,r/c},
such that S is roughly a e-fraction of U. For simplicity we will assume that S is a random set, which can be
achieved by performing an initial random permutation of U (or in some cases using simple hash functions,
see application below).

The baseline solution is to store the elements of S using [log, |U|| bits, i.e., more than nlog, |U| bits in
total. To improve this for £ not too small the idea is to use a very simple hash function that extracts the
log,  most significant bits of each key in S, more precisely h(z) = |ez].

a) Argue that knowledge of h(z) and ¢(z) = =z mod (1/¢) suffices to compute z, and that storing g(z)
requires only log,(1/¢) bits.

b) Consider a “run” of keys R C S stored in an interval I of size |R|. Argue that 2|I| bits suffice to encode
the multiset h(R) of hash values relative to I.

c) Suppose that you inserted elements of R, in sorted order. Argue that knowledge of I and the multiset
of corresponding h-values, {|ey| | y € R}, suffices to locate the set of keys in R having a particular
h-value.

d) Putting the above together, argue that log,(1/¢) + 2 bits per hash table entry suffices to encode S, giving
a total space usage of (1 + d)nlog,(1/¢) + O(n) bits.




