
Basics of hashing:  
k-independence and applications

Rasmus Pagh

Supported by:

1

Agenda
• Load balancing using hashing!

- Analysis using bounded independence!

• Implementation of small independence!

• Case studies:!
- Approximate membership!
- Hashing with linear probing!

• Exercise: Space-efficient linear probing

2

Prerequisites

• I assume you are familiar with the notions of:!
• a hash table!
• modular arithmetic [and perhaps finite fields]!
• expected value of a random variable

3

You can read about these things in e.g. CLRS or !

http://www.daimi.au.dk/~bromille/Notes/un.pdf

http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf
http://www.daimi.au.dk/~bromille/Notes/un.pdf

Load balancing by hashing
• Goal:  

Distribute an unknown, possibly dynamic, set S
of items approximately evenly to a set of buckets.

4

Load balancing by hashing
• Goal:  

Distribute an unknown, possibly dynamic, set S
of items approximately evenly to a set of buckets.

• Examples: Hash tables, SSDs, distributed key-
value stores, distributed computation, network
routing, parallel algorithms, …

4

Load balancing by hashing
• Goal:  

Distribute an unknown, possibly dynamic, set S
of items approximately evenly to a set of buckets.

• Examples: Hash tables, SSDs, distributed key-
value stores, distributed computation, network
routing, parallel algorithms, …

• Main tool: Random choice of assignment.

4

n items into n buckets
• Assume for now: Items are placed

uniformly and independently in buckets.!

• What is the probability that k items end up
in one particular bucket?!

• Use union bound to get an upper bound:

5

✓
n

k

◆
n�k < (nk/k!)n�k < 1/k!

n items into n buckets
• Assume for now: Items are placed

uniformly and independently in buckets.!

• What is the probability that k items end up
in one particular bucket?!

• Use union bound to get an upper bound:

5

✓
n

k

◆
n�k < (nk/k!)n�k < 1/k!

Conclusion: Probability of

having some bucket with k
items is at most n/k!!

⇒ largest bucket has size
O(log n/log log n) whp.

n items into r buckets
• Use better bound on binomial coefficients:!

!

• Upper bound, k items in particular bucket:

6

✓
n

k

◆
< (en/k)k

X

K✓S, |K|=k

r�k < (en/k)kr�k = (en/kr)k

n items into r buckets
• Use better bound on binomial coefficients:!

!

• Upper bound, k items in particular bucket:

6

✓
n

k

◆
< (en/k)k

X

K✓S, |K|=k

r�k < (en/k)kr�k = (en/kr)k

Conclusion: If k > 2en/r > 2 log r

the probability of k items in any

single bucket is < 1/r.

k-independence

• Observation: Proofs only used probabilities of
events involving k items.

• Consequence: It suffices that the hash function
used “behaves fully randomly” when
considering sets of k hash values.

7

k-independence

• Observation: Proofs only used probabilities of
events involving k items.

• Consequence: It suffices that the hash function
used “behaves fully randomly” when
considering sets of k hash values.

7

Definition: A random hash

function h is k-independent if

for all choices of distinct x1,…,xk

the values h(x1),…,h(xk) are
independent.

k-independence

• Observation: Proofs only used probabilities of
events involving k items.

• Consequence: It suffices that the hash function
used “behaves fully randomly” when
considering sets of k hash values.

• How do you implement k-independent hashing?

7

Definition: A random hash

function h is k-independent if

for all choices of distinct x1,…,xk

the values h(x1),…,h(xk) are
independent.

• Random polynomial degree k-1 hash function  
(assuming key x from field F): 
 

Polynomial hashing

p(x) =
k�1X

i=0

aix
i

8

• Random polynomial degree k-1 hash function  
(assuming key x from field F): 
 

Polynomial hashing

p(x) =
k�1X

i=0

aix
i

8

k-independent! 
Why?

• Random polynomial degree k-1 hash function  
(assuming key x from field F): 
 

Polynomial hashing

p(x) =
k�1X

i=0

aix
i

8

Map to smaller
range in any

“balanced” way
k-independent! 

Why?

• Random polynomial degree k-1 hash function  
(assuming key x from field F): 
 

Polynomial hashing

p(x) =
k�1X

i=0

aix
i

p(x) = xp

odd

(x2) + p

even

(x2)

8

Map to smaller
range in any

“balanced” way
k-independent! 

Why?
• Divide-and-conquer Horner’s rule:  
 
 
Reduces data dependencies!

• For GF(264): Use new CLMUL instruction with
sparse irreducible polynomial.!
- Time for k-independence ca. 3k ns!

• For GF(p), p=261-1 (Mersenne prime): Use double
64-bit registers and special code for modulo.!
- Time for k-independence ca. k ns

Implementing field operations
work by Tobias Christiani

9

• For GF(264): Use new CLMUL instruction with
sparse irreducible polynomial.!
- Time for k-independence ca. 3k ns!

• For GF(p), p=261-1 (Mersenne prime): Use double
64-bit registers and special code for modulo.!
- Time for k-independence ca. k ns

Implementing field operations
work by Tobias Christiani

9

x%p = (x>>61)+(x&p)

• For GF(264): Use new CLMUL instruction with
sparse irreducible polynomial.!
- Time for k-independence ca. 3k ns!

• For GF(p), p=261-1 (Mersenne prime): Use double
64-bit registers and special code for modulo.!
- Time for k-independence ca. k ns

Implementing field operations
work by Tobias Christiani

Fastest known for keys of 61 bits up
to more than 100-independence

9

x%p = (x>>61)+(x&p)

Tomorrow: Double tabulation

Mikkel Thorup on Danish TV
10

2-independence
• Degree 1 polynomial: h(x) = (ax+b mod p) mod r

• Property: 2-independent  
 ⇒ If a≠0: collision probability ≤ 1/r

11

2-independence
• Degree 1 polynomial: h(x) = (ax+b mod p) mod r

• Property: 2-independent  
 ⇒ If a≠0: collision probability ≤ 1/r

• For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.

11

2-independence
• Degree 1 polynomial: h(x) = (ax+b mod p) mod r

• Property: 2-independent  
 ⇒ If a≠0: collision probability ≤ 1/r

• For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.

• Probability of no collisions is ≥ 1 - n2/r.

11

2-independence
• Degree 1 polynomial: h(x) = (ax+b mod p) mod r

• Property: 2-independent  
 ⇒ If a≠0: collision probability ≤ 1/r

• For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.

• Probability of no collisions is ≥ 1 - n2/r.

11

Can map to (say) 128-bit “signature”

with extremely small risk of collision

Storing a set of signatures

• From last slide:  
For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.!

• Suppose r=2n and we store h(S) as a bitmap.

12

0110010110111000110111101010101001100010010111010

Storing a set of signatures

• From last slide:  
For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.!

• Suppose r=2n and we store h(S) as a bitmap.

12

Allows us to determine if x ∈ S with

“false positive” error probability 1/2.

0110010110111000110111101010101001100010010111010

Storing a set of signatures

• From last slide:  
For set S of n elements, x ∉ S: Pr[h(x) ∈ h(S)] ≤ n/r.!

• Suppose r=2n and we store h(S) as a bitmap.

12

Allows us to determine if x ∈ S with

“false positive” error probability 1/2.

0110010110111000110111101010101001100010010111010

Space 2 bits/item

Linear probing

• A simple method for placing a set of items into a
hash table.!

• No pointers, just keys and vacant space.!

• One of the first hash tables invented, still
practically important.

13

Hashing with linear probing

Hashing with linear probing

Hashing with linear probing

Hashing with linear probing

Hashing with linear probing

389 km/h 20 km/h

Race car vs golf car

• Linear probing uses a sequential scan and is thus
cache-friendly.!

• Order of magnitude speed difference between
sequential and random access!

16

History of linear probing
• First described in 1954.!
• Analyzed in 1962 by D. Knuth, aged 24.

Assumes hash function h is fully random.!
• Over 30 papers using this assumption.!
• Since 2007: We know simple, efficient hash

functions that make linear probing provably
work!

17

History of linear probing
• First described in 1954.!
• Analyzed in 1962 by D. Knuth, aged 24.

Assumes hash function h is fully random.!
• Over 30 papers using this assumption.!
• Since 2007: We know simple, efficient hash

functions that make linear probing provably
work!

17

Modern proof
• Idea: Link the number of steps used to insert an

item x to the size of intervals around h(x) being
“full” of hash values.

18

Notation: LI = |{x 2 S | h(x) 2 I}|

Modern proof
• Idea: Link the number of steps used to insert an

item x to the size of intervals around h(x) being
“full” of hash values.

18

Notation: LI = |{x 2 S | h(x) 2 I}|

Modern proof
• Idea: Link the number of steps used to insert an

item x to the size of intervals around h(x) being
“full” of hash values.

18

Notation: LI = |{x 2 S | h(x) 2 I}|

x

h(x)

I

Lemma. If insertion of a key x requires k probes,

then there exists an interval I of length at least k

such that h(x) 2 I and L

I

� |I|.

x

h(x)

I

Lemma. If insertion of a key x requires k probes,

then there exists an interval I of length at least k

such that h(x) 2 I and L

I

� |I|.

Insertion time is at
most the number of

“full” intervals
around h(x)

How many “full” intervals?
• Assume that r = 2n, so we expect  

LI=|I|/2. By Chernoff bounds:  
 

20

Pr[LI > 2E[LI]] < (e/4)E[LI]

Chernoff bounds are
found in books on randomized algorithms

or e.g. 	

www.cs.uiuc.edu/~jeffe/teaching/algorithms/
notes/11-chernoff.pdf

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf

How many “full” intervals?
• Assume that r = 2n, so we expect  

LI=|I|/2. By Chernoff bounds:  
 

• Expected number of full intervals around h(x):  
 

• Assumes that values h(x) are independent!

20

Pr[LI > 2E[LI]] < (e/4)E[LI]

Chernoff bounds are
found in books on randomized algorithms

or e.g. 	

www.cs.uiuc.edu/~jeffe/teaching/algorithms/
notes/11-chernoff.pdf

nX

k=1

(e/4)�k/2k = O(1)<

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/11-chernoff.pdf

With 7-independence

• Fix a particular interval I containing h(x).  
Want to analyze prob. that LI has |I| items.!

• Define:  
 

• Obs:

21

Y

x

=

⇢
1� `(I), if h(x) 2 I

�`(I), otherwise

.

X

x2S

Y
x

= L
I

�E[L
I

] = L
I

� n`(I)

`(I) = Pr[h(y) 2 I]  |I|/2

6th moment tail bound

22

• The first inequality is Markov’s.!

• The 2nd inequality requires that variables Yx
are 6-independent (and a calculation).

Pr[
X

x2S

Y
x

> |I|/2] = Pr[(
X

x2S

Y
x

)6 > (|I|/2)6]

< E[(
X

x2S

Y
x

)6]/(|I|/2)6

< 512/|I|3

Concluding the argument

• Expected number of full intervals around h(x) is
bounded by:

23

nX

k=1

X

I3h(x),|I|=k

Pr[L
I

� |I|] 
nX

k=1

k(512/k3)

< 512
1X

k=1

1/k2 = O(1)

Concluding the argument

• Expected number of full intervals around h(x) is
bounded by:

23

Insertion time is at most
the number of “full”
intervals around h(x)

nX

k=1

X

I3h(x),|I|=k

Pr[L
I

� |I|] 
nX

k=1

k(512/k3)

< 512
1X

k=1

1/k2 = O(1)

Concluding the argument

• Expected number of full intervals around h(x) is
bounded by:

23

Insertion time is at most
the number of “full”
intervals around h(x)

nX

k=1

X

I3h(x),|I|=k

Pr[L
I

� |I|] 
nX

k=1

k(512/k3)

< 512
1X

k=1

1/k2 = O(1)

Tighter analysis:  
5-independence works  

4-independence does not

Some references

• Patrascu and Thorup: On the k-Independence Required by Linear Probing and Minwise
Independence.  
http://people.csail.mit.edu/mip/papers/kwise-lb/kwise-lb.pdf (particularly section 1.1)!

• Pagh, Pagh, and Ruzic: Linear probing with 5-wise independence  
http://www.itu.dk/people/pagh/papers/linear-sigest.pdf!

• Thorup: String Hashing for Linear Probing  
https://www.siam.org/proceedings/soda/2009/SODA09_072_thorupm.pdf

24

http://people.csail.mit.edu/mip/papers/kwise-lb/kwise-lb.pdf
http://www.itu.dk/people/pagh/papers/linear-sigest.pdf
https://www.siam.org/proceedings/soda/2009/SODA09_072_thorupm.pdf

Epilogue: Deterministic hashing

• Java string hashing (signed 32-bit arithmetic):  
 h(a1a2…an) = an + 31 h(a1a2…an-1)

• Collisions:  
- h(Aa) = h(BB) = 2112 (equivalent substrings)  
- h(AaAa) = h(AaBB) = h(BBAa) = h(BBBB) = 2095104 
- …

25

Epilogue: Deterministic hashing

• Java string hashing (signed 32-bit arithmetic):  
 h(a1a2…an) = an + 31 h(a1a2…an-1)

• Collisions:  
- h(Aa) = h(BB) = 2112 (equivalent substrings)  
- h(AaAa) = h(AaBB) = h(BBAa) = h(BBBB) = 2095104 
- …

• Recent heuristic hash functions, with focus on
evaluation time: MurmurHash, CityHash, SipHash.

25

(Some) people are starting to care!

• Crosby & Wallach: Denial of Service via Algorithmic
Complexity Attacks. Usenix Security ’03.!
- Follow-ups: Chaos Communication Congress ’11, ’12.

26

(Some) people are starting to care!

• Crosby & Wallach: Denial of Service via Algorithmic
Complexity Attacks. Usenix Security ’03.!
- Follow-ups: Chaos Communication Congress ’11, ’12.

• Java, C++, C# libraries still use deterministic hashing.!
- Java falls back to BST for long hash chains!

• NEW: Ruby 1.9, Python 3.3, [Perl 5.18] now use random
hashing [if deterministic hashing fails].

26

27

