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CSE 521:  Algorithms  

Linear Programming 
 

Slides by Paul Beame, Anna Karlin, probably  
nameless others, … and occasionally L. Ruzzo 
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Linear Programming 

•  The process of minimizing a linear objective function 
subject to a finite number of linear equality and 
inequality constraints. 

•  Like “dynamic programming”, the word 
“programming” is historical and predates computer 
programming. 

•  Example applications: 
–  airline crew scheduling 
–  manufacturing and production planning 
–  telecommunications network design 

•  “Few problems studied in computer science have 
greater application in the real world.” 



Applications 

“Delta Air Lines flies over 2,500 domestic flight legs 
every day, using about 450 aircraft from 10 different 
fleets. The fleet assignment problem is to match aircraft 
to flight legs so that seats are filled with paying 
passengers. Recent advances in mathematical 
programming algorithms and computer hardware make 
it possible to solve optimization problems of this scope 
for the first time. Delta is the first airline to solve to 
completion one of the largest and most difficult 
problems in this industry. Use of the Coldstart model is 
expected to save Delta Air Lines $300 million over the 
next three years.” 
 



References – many, e.g.: 

Ch 7 of text by Dasgupta, Papadimitriou, Vazirani 
http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/chap7.pdf 

“Understanding and Using Linear Programming” by 
Matousek & Gartner 
“Linear Programming”, by Howard Karloff 

Simplex section available through Google books preview 

“Linear Algebra and Its Applications”, by G Strang, ch 8 
“Linear Programming”, by Vasek Chvatal 
“Intro to Linear Optimization”, by Bertsimas & Tsitsiklis 
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An Example: The Diet Problem 

•  A student is trying to decide on lowest cost diet that 
provides sufficient amount of protein, with two choices: 
–  steak: 2 units of protein/pound, $3/pound 
–  peanut butter: 1 unit of protein/pound, $2/pound 

•  In proper diet, need 4 units protein/day. 
Let x  = # pounds peanut butter/day in the diet. 
Let y  = # pounds steak/day in the diet.   

Goal:  minimize  2x + 3y (total cost) 
subject to constraints: 
   x + 2y ≥ 4 
   x ≥ 0,  y ≥ 0 

This is an LP- formulation 
of our problem 
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An Example: The Diet Problem 

•  This is an optimization problem. 
•  Any solution meeting the nutritional demands is called 

a feasible solution 
•  A feasible solution of minimum cost is called the 

optimal solution. 

Goal:  minimize  2x + 3y (total cost) 
subject to constraints: 
   x + 2y ≥ 4 
   x ≥ 0,  y ≥ 0 
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Linear Program - Definition 

A linear program is a problem with n variables  
x1,…,xn, that has: 

1.  A linear objective function, which must be 
      minimized/maximized. Looks like: 
          min (max) c1x1+c2x2+… +cnxn 
2.  A set of m linear constraints. A constraint  

looks like:  
           ai1x1 + ai2x2 + … + ainxn  ≤  bi (or ≥ or =) 
 
Note: the values of the coefficients ci, ai,j are 

given in the problem input. 
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Feasible Set 
•  Each linear inequality divides n-dimensional 

space into two halfspaces, one where the 
inequality is satisfied, and one where it’s not. 

•  Feasible Set: solutions to a family of linear 
inequalities. 

•  The linear cost function.  Defines a family of 
parallel hyperplanes (lines in 2D, planes in 
3D, etc.). Want to find one of minimum cost 
à must occur at a vertex (corner) of the 
feasible set. 
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Visually… 
x = peanut butter, y = steak 

y=0 

x=0 

feasible set 

Goal:   
minimize  2x + 3y (cost) 
subject to constraints: 
   x + 2y ≥ 4 
   x ≥ 0,  y ≥ 0 
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Optimal vector occurs at some 
corner of the feasible set 

x 

y 
Opt: 
x=0,
y=2 

Minimal price of 
one protein unit 
= 6/4 = 1.5 

feasible set 
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x 

y 

feasible set 

An example 
with 6 

constraints. 

Optimal vector occurs at some 
corner of the feasible set 
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Standard Form of a Linear Program. 

Minimize b1y1 + b2y2 + … + bmym 
subject to Σ 1 ≤ i ≤ m aijyi ≥ cj       j = 1..n 
                                 yi ≥ 0       i = 1..m 
or   
Maximize c1x1 + c2x2 + … + cnxn 
subject to Σ 1 ≤ j ≤ n aijxj ≤ bj       i = 1..m 
                                 xj ≥ 0       j = 1..n 
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The Feasible Set 
•  Intersection of a set of half-spaces is called a 

polyhedron. 
•  A bounded, nonempty polyhedron is a polytope. 

There are 3 cases: 
•  feasible set is empty. 
•  cost function is unbounded on feasible set. 
•  cost has a minimum (or max) on feasible set. 
(First two cases uncommon for real problems in 

economics and engineering.) 



GEOMETRIC INTERLUDE: 
CONVEXITY 
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Convexity 

A set of points is convex if for all pairs x, y in the 
set, every point on the line segment  
    { t x+(1-t) y | 0 < t < 1 }  
connecting them is also in the set 
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x 

y 

x 

y 

convex                            non-convex 



Convexity and half-spaces 

•  An inequality  
    ai1x1 + ai2x2 + … + ainxn  ≤  b 
defines a half-space.   

•  Half-spaces are convex 
•  Intersections of convex sets are convex 
•  So, the feasible region for a linear program is 

always a convex polyhedron 
•  Sometimes, edges/faces/etc are distracting; 

convexity may be all you need 
17 



•  Linear extrema are not in the interior of a convex set 
–  E.g.:  maximize c1x1+c2x2+… +cnxn 

–  If max were in the interior, there’s always a better interior 
point just off the hyperplane cTx = d  

•  On a polyhedron, max may = line, face, …, but 
includes vertices thereof, so always a “corner,”  
(though maybe not uniquely a corner) 

Max/Min is always at a “corner” 
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(but non-convexity  
is a problem for  
“hill-climbing”) 



Convex combinations 

•  Defn: a convex combination of points/
vectors p1,p2, …, pn is a point 
α1p1 + α2p2 + … + α2pn where αi > 0 and 
∑i αi =1 

•  Fact: the set of all convex combinations 
of p1,p2, …, pn sweep out their convex 
hull 
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Another Fact 

A linear function is monotonic  
along any line 

A line: v0 + t v1, t ∈ ℝ 
A linear function: cTx 

cT(v0 + t v1) =  
= (cTv0) + t (cTv1)  
= d0 + d1 t for some  
constants d0, d1 
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v0 

v1 + 
- 



Another Fact 

If a linear function is 
increasing along both v1 
and v2, then it is 
increasing along any 
convex combination  
α v1 + (1-α)v2, 0 < α < 1 
 

Proof: similar 
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v0 

v1 v2 + 
- 
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Solving LP 
There are several algorithms that solve any linear 
program optimally. 

The Simplex method (to be discussed) – fast in 
practice, tho not polynomial-time in worst case 
The Ellipsoid method – polynomial, but impractical 
Interior point methods – polynomial, competes w/ simplex 

They can be implemented in various ways. 
There are many existing software packages for LP. 
It is convenient to use LP as a “black box” for 
solving various optimization problems. 



THE SIMPLEX METHOD 
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Towards the Simplex Method 

The Toy Factory Problem: 
A toy factory produces dolls and cars. 
Danny, a new employee, can produce 2 cars and/or 3 dolls 

a day. However, the packaging machine can only pack 4 
items a day. The profit from each doll is $10 and from 
each car is $15. What should Danny be asked to do? 

Step 1: Describe the problem as an LP problem. 
Let x1,x2 denote the number of cars and dolls produced by 

Danny. 
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The Toy Factory Problem 
Let x1,x2 denote the number of cars and dolls produced by 

Danny. 
Objective:  

 Max z = 15x1+10x2 

s.t.  x1 ≤ 2 
       x2 ≤ 3 
  x1+x2 ≤ 4 
  x1 ≥ 0 
  x2 ≥ 0 
  

Feasible 
region 

x1 
x 1

 =
 2

 

x2 = 3 

x2 
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The Toy Factory Problem 
Let x1,x2 denote the number of cars and dolls produced by 

Danny. 
Objective:  

 Max z = 15x1+10x2 

s.t.  x1 ≤ 2 
       x2 ≤ 3 
  x1+x2 ≤ 4 
  x1 ≥ 0 
  x2 ≥ 0 
  A =

1
0
1

0
1
1

!

"

#
#
#

$

%

&
&
&

Equivalently 
     Max z = cTx  
s.t.  
  Ax ≤ b,  
    x ≥ 0,  
where  
  cT = (15,10),  
  bT = (2,3,4) 
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The Toy Factory Problem 

Feasible 
region 

x1 

x 1
 =

 2
 

x2 = 3 

x2 Constant profit 
lines –  They are 
always parallel.  

Goal: Find the 
best one 
touching the 
feasible region. 
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Important Observations: 

Feasible 
region 

x1 

x 1
 =

 2
 

x2 = 3 

x2 

1. Optimum solution to the LP is always at a vertex! 

It might be that the 
objective line is parallel 
to a constraint (e.g., 
consider z=15x1+15x2). 
In this case there are 
many optima, but in 
particular, one is at a 
relevant vertex. 
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Important Observations: 

2. If a feasible vertex has an objective function 
value that is better than or equal to all its adjacent 
feasible vertices, then it is optimal.  I.e., a local opt 
is a global opt.  (WHY??) 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

z=50 

3. There are a finite number of feasible vertices. 

The Simplex method: Hill-
climbing on polytope edges:  
 
Travel from one feasible 
vertex to a neighboring one 
until a local maximum. 
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The Simplex Method 

Phase 1 (start-up): Find any feasible vertex. In 
standard LPs the origin can serve as the start 
vertex. 

Phase 2 (iterate): Repeatedly move to a better 
adjacent feasible vertex until none can be found. 
The final vertex is the optimum point. 
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Example: The Toy Factory Problem 

Phase 1: start at (0,0) 
 Objective value = Z(0,0)=0 

 
Iteration 1: Move to (2,0). 

 Z(2,0)=30. An Improvement 
 
Iteration 2: Move to (2,2) 

 Z(2,2)=50. An Improvement 
 
Iteration 3: Consider moving to 

(1,3), Z(1,3)=45 < 50. 
Conclude that (2,2) is 
optimum! 

Feasible 
region 

x1 

x 1
=2

 

x2=3 

x2 

(0,0) (2,0) 

(2,2) 

(1,3) 
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Finding Feasible Vertices 
Algebraically 

The simplex method is easy to follow graphically. But 
how is it implemented in practice? 

Notes:  
•  At a vertex a subset of the inequalities are equations. 
•  It is possible to find the intersection of linear 

equations, i.e., simultaneous solution to a set of eqns 
•  We will add slack variables – to determine which 

inequalities are active (i.e., tight) and which are not 
active  
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Adding Slack Variables 
Let s1,s2,s3 be the slack variables 
 
Objective:  

 Max z=15x1+10x2 
s.t             x1 + s1 = 2 

              x2 + s2 = 3 
       x1 + x2 + s3 = 4 
 x1, x2, s1, s2, s3 ≥ 0 

                 
 
 
A vertex: Some variables (slack or original) are zero. 

Feasible 
region 

x1 
x 1

 =
 2

 

x2 = 3 

x2 
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Adding Slack Variables 

Feasible 
region 

x1 

x 1
=2

 
x2 = 3 

x2 

x1=0 
x2=0 

x1=0 
s2=0 

s2=0 
s3=0 

s1=0 
s3=0 

s1=0 
x2=0 

x1 + s1 = 2 
x2 + s2 = 3 
x1+x2 +s3 = 4 
x1, x2, s1, s2, s3 ≥ 0 
 
Moving between 
vertices: Decide 
which two variables 
are set to zero. 
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The Simplex Method - Definitions 

Nonbasic variable: a variable currently set to zero by the 
simplex method. 

Basic variable: a variable that is not currently set to zero 
by the simplex method. 

A basis: As simplex proceeds, the variables are always 
assigned to the basic set or the nonbasic set. The 
current assignment of the variables is called the 
basis. 

 
Nonbasic, variables set to zero, corresponding 
constraint is active. 
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The Simplex Method 
At two adjacent vertices, the nonbasic sets and the 

basic sets are identical except for one member. 
Example: 

Feasible 
region 

x1 

x 1
 =

 2
 

x2 = 3 

x2 Nonbasic set: 
{s1,s3} 

Basic set: 
{x1,x2,s2} 
 

Nonbasic 
set: {s2,s3} 

Basic set: 
{x1,x2,s1} 
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The Simplex Method 
The process is therefore based on swapping a pair of 

variables between the basic and the nonbasic sets. 
It is done in a way that improves the objective function. 
Example: 

Feasible 
region 

x1 

x 1
 =

 2
 

x2 = 3 

x2 Moving to a 
new corner 
point: x1 
enters the 
basic set, s1 
leaves the 
basic set 

Current 
cornerpoint 
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The Simplex Method – more details 
Phase 1 (start-up): Find initial feasible vertex.  

Phase 2 (iterate):  

1.  Can the current objective value be improved by 
swapping a basic variable? If not - stop. 

2.  Select entering basic variable, e.g. via greedy heuristic: 
choose the nonbasic variable that gives the fastest rate 
of increase in the objective function value. 

3.  Select the leaving basic variable by applying the 
minimum ratio (tightest constraint) test 

4.  Update equations to reflect new basic feasible solution. 
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The Simplex Method – example 
Objective:  

 Max z = 15x1 + 10x2 
s.t.             x1 + s1 = 2 

             x2 + s2 = 3 
       x1 + x2 + s3 = 4 

    x1, x2, s1, s2, s3 ≥ 0 
 

Phase 2 (iterate):  

1.  Are we optimal? NO, z’s value can increase by 
increasing either x1 or x2.  

2.  Select entering basic variable: increasing x1 improves 
the objective value faster (15 > 10) (greedy heuristic) 

Phase 1 (start-up): Initial 
feasible solution: 

x1 = 0, x2 = 0,  
s1 = 2, s2 = 3, s3 = 4   

Nonbasic set = {x1, x2} 
Basic set = {s1 , s2, s3} 
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The Simplex Method – example 
s1 = 2 -   x1  
s2 = 3          -     x2 
s3 = 4 -    x1 +    x2 
z =       15x1 + 10x2 

  
and x1, x2, s1, s2, s3 ≥ 0 
 
The “Simplex tableau”: a convenient way to visualize the 
state of the algorithm (esp. for by-hand examples): 
 - Constraints above the line 
 - Objective below the line 
 - Basic vars & z in LHS; constants and non-basic in RHS 
 - Constants trivially = basic var values when nonbasic=0 

Phase 1 (start-up): Initial 
feasible solution: 

x1 = 0, x2 = 0,  
s1 = 2, s2 = 3, s3 = 4   

Nonbasic set = {x1, x2} 
Basic set = {s1 , s2, s3} 
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The Simplex Method – example 
s1 = 2 -   x1  
s2 = 3          -     x2 
s3 = 4 -    x1 +    x2 
z =       15x1 + 10x2 

  
and x1, x2, s1, s2, s3 ≥ 0 
 

Phase 2 (iterate):  

1.  Are we optimal? NO, z’s value can increase by 
increasing either x1 or x2.  

2.  Select entering basic variable: increasing x1 improves 
the objective value faster (15 > 10) (greedy heuristic) 

Phase 1 (start-up): Initial 
feasible solution: 

x1 = 0, x2 = 0,  
s1 = 2, s2 = 3, s3 = 4   

Nonbasic set = {x1, x2} 
Basic set = {s1 , s2, s3} 
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The Simplex Method – example 
s1 = 2 -   x1  
s2 = 3          -     x2 
s3 = 4 -    x1 +    x2 
z =       15x1 + 10x2 

  
and x1, x2, s1, s2, s3 ≥ 0 
 

Phase 2:  

3. Select leaving variable:  
eqn 1: could raise x1 to 2 without violating s1 ≥ 0 
eqn 2: no constraint 
eqn 3: with x2 = s3 = 0, could raise x1 to 4 

Phase 1 (start-up): Initial 
feasible solution: 

x1 = 0, x2 = 0,  
s1 = 2, s2 = 3, s3 = 4   

Nonbasic set = {x1, x2} 
Basic set = {s1 , s2, s3} 

TIGHTEST 
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The Simplex Method – example 
s1 = 2 -   x1  
s2 = 3          -     x2 
s3 = 4 -    x1 +    x2 
z =       15x1 + 10x2 

  
and x1, x2, s1, s2, s3 ≥ 0 
 

Phase 2:  

3. Select leaving variable:  
eqn 1: could raise x1 to 2 without violating s1 ≥ 0 
eqn 2: no constraint 
eqn 3: with x2 = s3 = 0, could raise x1 to 4 

TIGHTEST 

Rewrite eqns, substituting 2-s1 for x1 

x1 =  2 -    s1  
s2 =  3           -     x2 
s3 =  2 +    s1 +    x2 
z =  30 - 15s1 + 10x2 

  
and x1, x2, s1, s2, s3 ≥ 0 
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The Simplex Method – example 
 
 
 
 
 
 
 

Phase 2:  

  End of iteration 1. 

x1 =  2 -    s1  
s2 =  3           -     x2 
s3 =  2 +    s1 +    x2 
z =  30 - 15s1 + 10x2 

  
and x1, x2, s1, s2, s3 ≥ 0 
 

The new vertex: 
  z=30 
  Nonbasic set = {s1, x2} (rhs)  
  Basic set = {x1 , s2, s3} (lhs) 
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The Simplex Method – example 
Phase 2 (iteration 2):  

1.  Are we optimal? NO, z’s value can increase by increasing 
the values of x2.  

2.  Select entering basic variable: the only candidate is x2.  
3.  Select the leaving basic variables: The minimum ratio test. 

For x1 the ratio is infinite, for s2 the ratio is 3/1=3, for s3 the 
ratio is 2/1=2. s3 has the smallest ratio. 

4.  Update the equations to reflect the new basic feasible 
solution: x1=2, x2=2, s1=0, s2=1, s3=0. z=50.  Nonbasic set 
= {s1, s3},  Basic set = {x1 , s2, x3},  

End of iteration 2. 
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The Simplex Method – example 
Phase 2 (iteration 3):  

1.  Are we optimal? YES, z’s value can not increase by 
increasing the value of either s1 or s3.  

End of example. 

Remarks:  

The Simplex tableau gives a quick way to select the 
variable to enter and the variable to leave the basis. 

In case of a tie, both directions are ok, there is no sure-fire 
heuristic to determine which will terminate first. 
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Simplex Algorithm:  
An Example in 3D 

Maximize  5x + 4y + 3z 
subject to  2x + 3y +   z ≤   5 
                  4x +  y +  2z ≤ 11 
                  3x + 4y + 2z ≤   8 
                  x, y, z ≥ 0 
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Simplex Algorithm: A 3D Example 

Maximize  5x + 4y + 3z 
subject to  2x + 3y + z ≤ 5 
                 4x + y + 2z  ≤ 11 
                 3x + 4y + 2z ≤ 8 
                             x,y,z ≥0. 

Step 0: convert inequalities into equalities by 
introducing slack variables a,b,c. 

Define:   a =  5-2x-3y-z         ⇒   a ≥ 0 
              b = 11-4x- y-2z       ⇒   b ≥ 0   
              c =   8-3x-4y-2z      ⇒   c ≥ 0 
              F =      5x+4y+3z,   objective function 
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Example of Simplex Method, 
continued. 

Step 1: Find initial feasible solution: 
x=0,y=0,z=0    ⇒     a=5, b=11, c=8  ⇒ F=0. 
Step 2: Find feasible solution with higher value of F  
For example, can increase x  to get F=5x. 
 

How much can we increase x? 
          a = 5-2x-3y-z   ≥ 0    ⇒    x ≤ 5/2     most stringent 
          b = 11-4x-y-2z ≥ 0    ⇒     x ≤ 11/4 
          c =  8-3x-4y-2z  ≥ 0  ⇒     x ≤ 8/3 

⇒ increase x to 5/2 ⇒ F= 25/2,  a=0, b=1, c=1/2 
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Example of Simplex Method, 
continued. 

Want to keep doing this, need to get back into state 
where x,b,c on l.h.s. of equations. 

a = 5-2x-3y-z  ⇒  x= 5/2  - 3/2 y - 1/2 z - 1/2  a   (*) 

 
Substituting (*) into other equations: 
          b = 11-4x-y-2z ≥ 0   ⇒  b = 1 + 5y + 2a 
          c =  8-3x-4y-2z ≥ 0  ⇒  c = 1/2 + 1/2 y -1/2 z + 3/2 a 
          F = 5x+4y + 3z       ⇒  F= 25/2 - 7/2 y + 1/2 z - 5/2 a 
 

In order to increase F again, should increase z 
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Simplex Example, continued. 
How much can we increase z? 
x = 5/2  - 3/2 y -1/2 z - 1/2  a     ⇒ z ≤ 5 
b = 1 + 5y + 2a                        ⇒ no restriction 
c = 1/2 + 1/2 y -1/2 z + 3/2 a   ⇒ z ≤ 1  most stringent (^) 
 
Setting z = 1 yields 
x=2, y=0, z=1, a=0, b = 1, c = 0.            
F= 25/2 - 7/2 y + 1/2 z - 5/2 a    ⇒ F= 13. 
 
Again, construct system of equations. 
From (^)     z = 1 + y + 3a - 2c. 
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Simplex Example, continued. 

Substituting back into other equations: 
 z = 1 + y + 3a - 2c. 
 x = 5/2  - 3/2 y -1/2 z - 1/2  a    ⇒ x = 2-2y-2a + c 
 b = 1 + 5y + 2a                         ⇒ b =  1 + 5y + 2a 
 F = 25/2 - 7/2 y + 1/2 z - 5/2 a  ⇒ F = 13 - 3y -a - c 
  
 
And we’re done. 
 



Simplex – Loose Ends 

•  Finding an initial feasible point 
•  Unboundedness 
•  Infeasibility 
•  Degeneracy, cycling, and pivot choice  
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Initial Feasible Point 

• Problem: Maximize  cTx  subject to Ax ≤ b,  x ≥ 0 
• Equational form: 

– add slack variables so Ax = b  (new A = old A|I, x longer) 

•  Initial point: 
– Make b ≥ 0 (multiply rows by -1 as needed) Solve 

auxiliary LP: 
•  maximize  -1Ty s.t. Ax + y = b, x,y ≥ 0  
•  x = 0, y = b is feasible start for aux LP 
•  Solution is y = 0 iff original is feasible 
•  And the resulting x is feasible start for original LP 
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Degeneracy, Cycling, Pivot Rules 

•  Some (of many) pivot rules: 
–  Largest coefficient (Danzig) 
–  Largest increase 
–  Bland’s rule (entering/exiting vars w/ min index) 
– Random edge 
–  Steepest edge – seems to be best in practice 

•  In n dimensions, n hyperplanes can define a point.  If 
more intersect at a vertex, the LP is degenerate, and 
most of the above rules may stall there, i.e., “move” to 
same vertex (with different basis); some may cycle 
there: infinite loop 
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DUALITY 

64 
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A Central Result of LP Theory: 
Duality Theorem 

•  Every linear program has a dual 
•  If the original is a maximization, the dual is a 

minimization and vice versa 
•  Solution of one leads to solution of other 
Primal:  Maximize  cTx  subject to Ax ≤ b,  x ≥ 0 
Dual:  Minimize  bTy  subject to ATy ≥ c,  y ≥ 0 
 
If one has optimal solution so does the other, and 

their values are the same. 
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Toy Factory 
Maximize z = 15x+10y 

s.t.  x, y ≥ 0 &  x ≤ 2   [1] 
       y ≤ 3   [2] 
  x+y ≤ 4   [3] 

So: 
 z = 15x+10y ≤ 15(x+y)        ≤ 15*4         = 60  (15*[3]) 

 z = 15x+10y ≤ 14(x+y)+ x ≤14*4+1*2  = 58  (14*[3]+1*[1]) 

 z = 15x+10y ≤ 10(x+y)+5x ≤10*4+5*2 = 50  (10*[3]+5*[1]) 
 … etc … 

In general–positive linear combination of primal constraints 
that bound its objective coefficients also bound its value.  
The dual LP finds exactly the optimal such combination.  
(Dual constraints insure that every feasible point in the dual is a combination that bounds 
primal objective coefficients; dual LP minimizes over them all.) 

Feasible 
region 

x 

x  
= 

2 

y = 3 

y 
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Primal: Maximize  cTx  subject to Ax ≤ b,  x ≥ 0 

Dual: Minimize  bTy  subject to ATy ≥ c,  y ≥ 0 
 

•  In the primal, c is cost function and b was in 
the constraint. In the dual, reversed. 

•  Inequality sign is changed and minimization 
turns to maximization. 

 
Primal:  
maximize 2x + 3y 
s.t            x + 2y ≤ 4,   
                2x + 5y ≤ 1,  
                  x -  3y ≤ 2,   
                 x ≥ 0, y ≥ 0   
In p*1st+q*2nd+r*3rd, coef of x is ≥ 2, coef of y is ≥ 3, etc.  etc. 

Dual:  
minimize  4p + q +  2r    s.t    

        p + 2q +  r ≥ 2,  

              2p + 5q - 3r ≥ 3,   

                        p,q,r ≥ 0 
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Proof of Weak Duality 

•  Suppose that  
–  x satisfies Ax ≤ b,  x ≥ 0 
–  y satisfies ATy ≥ c,  y ≥ 0 

•  Then  
–  cTx  ≤  (ATy)T x    since x ≥ 0 and ATy ≥ c 
          =  yT A x        by definition 
          ≤  yTb            since y ≥ 0 and Ax ≤ b 
          = bTy             by definition 

•  This says that any feasible solution to the primal 
(maximization problem) has an objective function 
value at most that of any feasible solution of the dual 
(minimization) problem.  

•  Strong duality: says the optima of the two are equal 
 



70 

Simple Example 
•  Diet problem:  minimize 2x + 3y 
    subject to         x + 2y ≥ 4,   

        x ≥ 0, y ≥ 0 
•  Dual problem: maximize    4p  

   subject to             p ≤ 2,  
           2p ≤ 3,  
             p ≥ 0 

•  Dual: the problem faced by a druggist who sells 
synthetic protein, trying to compete with peanut 
butter and steak 
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Simple Example 
•  The druggist wants to maximize the price p of 

one unit of protein, subject to constraints: 
–  synthetic protein must not cost more than protein 

available in foods. 
–  price must be non-negative or he won’t sell any 
–  revenue to druggist will be 4p 

•  Solution:  p ≤ 3/2  à  objective value = 4p = 6 
•  Not coincidence that it’s equal the minimal cost in 

original problem.   
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What’s going on? 
•  Notice: feasible sets completely different for primal 

and dual, but nonetheless an important relation 
between them. 

•  Duality theorem says that in the competition between 
the grocer and the druggist the result is always a tie. 

•  Optimal solution to primal tells purchaser what to do. 
•  Optimal solution to dual fixes the natural prices at 

which economy should run. 
•  The food x and synthetic prices y are optimal when 

–  grocer sells zero of any food that is priced above its synthetic 
equivalent. 

–  druggist charges 0 for any synthetic that is oversupplied in the 
diet. 
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Duality Theorem 

Druggist’s max revenue = Purchasers min cost 
 
Practical Use of Duality: 
•  Sometimes simplex algorithm (or other 

algorithms) will run faster on the dual than on 
the primal. 

•  Can be used to bound how far you are from 
optimal solution. 

•  Important implications for economists. 
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Example: Max Flow 

Variables: fuv - the flow on edge e=(u,v). 
 
             Max  Σu fsu 

                s.t. 
                   fuv ≤ cuv,  ∀(u,v) ∈ E   

 
  Σu fuv - Σw fvw = 0,    ∀v ∈ V-{s,t} 

 
                    fuv ≥ 0,   ∀(u,v) ∈ E 

huv 

Dual variables 

gv 
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Dual to: Max Flow 

Variables: gv, huv 
 

 Min  Σuv cuv huv 

s.t. 
        hsv + gv ≥ 1,      ∀v ∈ V-s   
 huv + gv– gu ≥ 0,   ∀u,v ∈ V-{s,t} 

            hut– gu ≥ 0,       ∀u ∈ V-t 
               huv ≥ 0,  ∀(u,v) ∈ E 
Dual Solution:  Given st-cut (S,T) with S = s ∪ A  
                         Set gv   = 1 for v ∊ A and gv = 0 otherwise 
                         Set huv = 1 for u ∊ A and v not in A 
                         Set huv = 0 otherwise 
                         Value is exactly the value of the cut 
 

WLOG at minimum 
huv = max(gu-gv,0) 
         for u,v≠s,t 
hut = max(gu,0)  
hsv = max(1-gv,0) 



INTEGER PROGRAMMING 
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Integer Programming (IP) 

•  An LP problem with an additional requirement 
that variables will only get an integral value, 
maybe from some range. 

•  01P – binary integer programming: variables 
should be assigned only 0 or 1. 

•  Can model many problems. 
•  NP-hard to solve! 
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01P Example: Vertex Cover 

Variables: for each v ∈ V, xv – is v in the cover? 
Minimize:  Σvxv    
Subject to:  xv ∈ {0,1} 

               xi + xj  ≥ 1   ∀{i,j} ∈ E   
 
                                          



LP RELAXATION AND 
APPROXIMATION ALGORITHMS 
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LP-based approximations 

•  We don’t know any polynomial-time algorithm 
for any NP-complete problem 

•  We know how to solve LP in polynomial time 
•  We will see that LP can be used to get 

approximate solutions to some NP-complete 
problems. 
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 Weighted Vertex Cover 

Input: Graph G=(V,E) with non-negative weights 
wv on the vertices. 

Goal: Find a minimum-cost set of vertices S, 
such that all the edges are covered. An edge 
is covered iff at least one of its endpoints is in 
S. 

Recall: Vertex Cover is NP-complete.  
   The best known approximation factor is      
   2 - 1/sqrt(log|V|). 
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Weighted Vertex Cover 

Variables: for each v ∈ V, xv – is v in the cover? 
 
Min  Σv ∈ V wvxv 

s.t. 
 xv + xu ≥ 1,  ∀(u,v) ∈ E   

 
 xv ∈ {0,1}   ∀v ∈ V 
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The LP Relaxation 

This is not a linear program: the constraints of type 
xv ∈ {0,1} are not linear. We got an LP with integrality 

constraints on variables – an integer linear programs 
(IP) that is NP-hard to solve. 

 
However, if we replace the constraints xv ∈ {0,1} 
by xv ≥ 0 and xv ≤ 1, we will get a linear program. 
 
The resulting LP is called a Linear Relaxation of 
IP, since we relax the integrality constraints. 
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LP Relaxation of Weighted Vertex 
Cover 

Min  Σv∈V wvxv 

s.t. 
 xv + xu ≥ 1,  ∀(u,v)∈E   

 
  xv ≥ 0,  ∀v∈V 

    xv ≤ 1,  ∀v∈V 
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LP Relaxation of Weighted Vertex 
Cover - example 

Consider the case of a 3-cycle in 
which all weights are 1. 

An optimal VC has cost 2 (any two 
vertices) 

An optimal relaxation has cost 3/2 (for 
all three vertices xv=1/2)  

½ 

½ 

½ 
The LP and the IP are different 
problems. Can we still learn 
something about Integral VC? 
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Why LP Relaxation Is Useful ?  

The optimal value of LP-solution provides a 
bound on the optimal value of the original 
optimization problem. OPTLP is always better 
than OPTIP (why?) 

Therefore, if we find an integral solution within a 
factor r of OPTLP, it is also an r-approximation of 
the original problem. 

It can be done by ‘wise’ rounding. 
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Approximation of 
Vertex Cover Using LP-Rounding 

1. Solve the LP-Relaxation. 

2. Let S be the set of all the vertices v with x(v) ≥ 1/2. 
Output S as the solution. 

Analysis: The solution is feasible: for each edge e=(u,v), 
either x(v) ≥1/2 or x(u) ≥1/2 

The value of the solution is: Σv∈s w(v) = Σ{v|x(v) ≥1/2} w(v) ≤ 
2Σv∈V w(v)x(v) =2OPTLP 

Since OPTLP ≤ OPTVC, the cost of the solution is ≤ 
2OPTVC. 
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Linear Programming - Summary 
•  Of great practical importance to solve linear 

programs: 
–  they model important practical problems 

•  production, approximating the solution of 
inconsistent equations, manufacturing, network 
design, flow control, resource allocation. 

–  solving an LP is often an important component of 
solving or approximating the solution to an 
integer linear programming problem. 

•  Can be solved in poly-time, but the simplex 
algorithm works very well in practice.  

•  One problem where you really do not want to 
roll your own code. 


