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The class P	


Definition: P  = the set of (decision) problems 
solvable by computers in polynomial time,  i.e.,	


	
T(n) = O(nk) for some fixed k (indp of input).	

These problems are sometimes called tractable 
problems.	

	

Examples: sorting, shortest path, MST, connectivity, 
RNA folding & other dyn. prog., flows & matching���
– i.e.: most of this qtr	


(exceptions: Change-Making/Stamps, Knapsack, TSP)	


	




Why “Polynomial”?	


Point is not that n2000 is a nice time bound, or that the 
differences among n and 2n and n2 are negligible.	


	


Rather, simple theoretical tools may not easily capture such 
differences, whereas exponentials are qualitatively different 
from polynomials and may be amenable to theoretical 
analysis.	


“My problem is in P” is a starting point for a more detailed analysis	

“My problem is not in P” may suggest that you need to shift to a more 
tractable variant 	


4	




5	


22n 

2n/10 

1000n2 

 

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	


 	




Decision vs Search Problems 
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Problem Types 

A clique in an undirect graph G=(V,E) is a  
subset U of V  such that every pair of  
vertices in U is joined by an edge. 

E.g., mutual friends on facebook, genes that vary together 

An optimization problem: How large is the largest clique in G 

A search problem: Find the/a largest clique in G  
A search problem: Given G and integer k, find a k-clique in G 
A decision problem: Given G and k, is there a k-clique in G 
A verification problem: Given G, k, U, is U a k-clique in G 



Decision Problems	


So far we have mostly considered search and optimization 
problems – “Find a…” or “How large is the largest…”	


Below, we mainly restrict discussion to decision problems - 
problems that have an answer of either yes or no.	

Loss of generality? Not really	


Usually easy to convert to decision problem:	


If we know how to solve the decision problem, ���
then we can usually solve the original problem. 	


Most importantly, decision problem is easier (at least, not harder), so a 
lower bound on the decision problem is a lower bound on the 
associated search/optimization problem.	
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Interesting possible exception: 

compositeness vs factoring. 
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“Problem” – the general case	

Ex: The Clique Problem: Given a graph G and an integer k, 
does G contain a k-clique?	


“Problem Instance” – the specific cases	

Ex: Does                     contain a 4-clique? (no)	


Ex: Does                     contain a 3-clique? (yes)	

Problems as Sets of “Yes” Instances	


Ex: CLIQUE = { (G,k) | G contains a k-clique }	

E.g., (                 , 4) ∉  CLIQUE	

E.g., (                 , 3) ∈  CLIQUE	


Some Convenient Technicalities	




Beyond P 
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Boolean Satisfiability 

Boolean variables x1, ..., xn 
taking values in {0,1}.  0=false, 1=true 

Literals 
xi or ¬xi for i = 1, ..., n 

Clause 
a logical OR of one or more literals 
e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12) 

CNF formula (“conjunctive normal form”) 
a logical AND of a bunch of clauses 
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Boolean Satisfiability 

CNF formula example 
(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7) 

If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable 

the one above is, the following isn’t 
x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3 
 

Satisfiability:  Given a CNF formula F, is it satisfiable? 
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Satisfiable? 
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More Problems 

Independent-Set:  
Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer, for which there is  a subset U of V  
with |U| ≥ k such that no pair of vertices in U is 
joined by an edge. 

Clique:  
Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer k, for which there is a subset U of V 
with |U| ≥ k such that every pair of vertices in U 
is joined by an edge. 
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More Problems 

Euler Tour:  
Graphs G=(V,E) for which there is a cycle traversing each 
edge once. 

Hamilton Tour:  
Graphs G=(V,E) for which there is a simple cycle of length 
|V|, i.e., traversing each vertex once. 

TSP:  
Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is 
an integer, such that there is a Hamilton tour of G with 
total weight ≤ k. 



More Problems 

Short Path: 
   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 

vertices s, t, and an integer k, for which there is a path 
from s to t of length ≤ k 

 
Long Path: 
   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 

vertices s, t, and an integer k, for which there is an acyclic 
path from s to t of length ≥ k 
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More Problems 

3-Coloring:  
Graphs G=(V,E) for which there is an assignment of at most 
3 colors to the vertices in G such that no two adjacent 
vertices have the same color. 
 
Example: 
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Beyond P?	


There are many natural, practical problems for 
which we don’t know any polynomial-time 
algorithms:	

  e.g. CLIQUE:  	


Given an undirected graph G and an integer k, does G contain 
a k-clique?	


e.g., most of others just mentioned (excl: shortpath, Euler)	

	

	


Lack of imagination or intrinsic barrier?	




NP 
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Review: Some Problems 

Quadratic Diophantine Equations 
Clique 
Independent Set 
Euler Tour 
Hamilton Tour 
TSP 
3-Coloring 
Partition 
Satisfiability 
Short Paths 
Long Paths 

All of the form: Given 
input  X Is there a Y 
with property Z 
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Common property of these problems: 
Discrete Exponential Search 

 Loosely–find a needle in a haystack 
“Answer” to a decision problem is literally just yes/no, but 
there’s always a somewhat more elaborate “solution” (aka 
“hint” or “certificate”; what the search version would 
report) that transparently‡ justifies each “yes” instance (and 
only those) – but it’s buried in an exponentially large search 
space of potential solutions.  
 
 
 
‡Transparently = verifiable in polynomial time 
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Defining NP 

A decision problem L is in NP iff there is a polynomial time 
procedure v(-,-), (the “verifier”) and an integer k such that  

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES  
and 
for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES 

(“Hints,” sometimes called “certificates,” or “witnesses”, are 
just strings. Think of them as exactly what the search version 
would output.) 



Example: Clique 

“Is there a k-clique in this graph?” 
any subset of k vertices might be a clique 
there are many such subsets, but I only need to find one 
if I knew where it was, I could describe it succinctly, e.g. 
“look at vertices 2,3,17,42,...”,  
I’d know one if I saw one: “yes, there are edges between  
2 & 3, 2 & 17,... so it’s a k-clique” 
this can be quickly checked 
And if there is not a k-clique, I wouldn’t be fooled by a 
statement like “look at vertices 2,3,17,42,...”   
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More Formally: CLIQUE is in NP 

procedure v(x,h) 
if  
    x is a well-formed representation of  a graph  
    G = (V, E) and an integer k,  
and  
    h is a well-formed representation of a k-vertex  
    subset U of V,  
and  
    U is a clique in G,  
then output “YES” 
else output “I’m unconvinced”  

Important note: this answer does 
NOT mean x ∉ CLIQUE; just 
means this h isn’t a k-clique (but 
some other might be). 	
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Is it correct? 

For every x = (G,k) such that G contains a k-clique, 
there is a hint h that will cause v(x,h) to say YES, 
namely h = a list of the vertices in such a k-clique 
and 
No hint can fool v into saying yes if either x isn’t 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any cliques of size k (the 
interesting case) 
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2 



Example: SAT 

“Is there a satisfying assignment for this Boolean 
formula?” 

any assignment might work       
there are lots of them      
I only need one      
if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T”       
I’d know one if I saw one: “yes, plugging that in, I see formula = T...” 
and this can be quickly checked 
And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T, 
x2=F, ..., xn=F”       
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More Formally: SAT ∈ NP 

Hint: the satisfying assignment A 
Verifier: v(F,A) = syntax(F,A) && satisfies(F,A) 

Syntax: True iff  F is a well-formed formula & A is a truth-
assignment to its variables 
Satisfies: plug A into F and evaluate 

Correctness: 
If F is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it 
If F is unsatisfiable, it doesn’t, and we won’t be fooled 

Analysis:  |A| < |F|, and time for v(F,A) ~ linear in |F|+|A| 



Short Path	


“Is there a short path (< k) from s to t in this graph?”	

	
Any path might work	


	
There are lots of them	

	
I only need one	


	
If I knew one I could describe it succinctly, e.g., “go from s 
to node 2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I see there’s an edge from 
s to 2 and from 2 to 42... and the total length is < k”	


	
And if there isn’t a short path, I wouldn’t be fooled by, 
e.g., “go from s to node 2, then node 42, then ... ”	
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Long Path	


“Is there a long path (> k) from s to t in this graph?”	

	
Any path might work	


	
There are lots of them	

	
I only need one	


	
If I knew one I could describe it succinctly, e.g., “go from s 
to node 2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I see there’s an edge from 
s to 2 and from 2 to 42... and the total length is > k”	


	
And if there isn’t a long path, I wouldn’t be fooled by, e.g., 
“go from s to node 2, then node 42, then ... ”	
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Two Final Points About “Hints” 	


1.  Hints/verifiers aren’t unique.  The “… there is a …” 
framework often suggests their form, but many 
possibilities	


	
“is there a clique” could be verified from its vertices, or its edges, or 
all but 3 of each, or all non-vertices, or…  Details of the hint string 
and the verifier and its time bound shift, but same bottom line	


	


2. In NP doesn’t prove its hard	


	
“Short Path” or “Small Spanning Tree” or “Large Flow” can be 
formulated as “…there is a…,” but, due to very special structure of 
these problems, we can quickly find the solution even without a hint.  
The mystery is whether that’s possible for the other problems, too.	
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Contrast: problems not in NP (probably)  

Rather than “there is a…” maybe it’s  
“no…” or “for all…” or “the smallest/largest…” 

E.g. 
    UNSAT: “no assignment satisfies formula,” or  

“for all assignments, formula is false” 
Or 
    NOCLIQUE: “every subset of k vertices is not a k-clique” 

 MAXCLIQUE: “the largest clique has size k” 
It seems unlikely that a single, short hint is sufficiently 
informative to allow poly time verification of properties like 
these (but this is also an important open problem). 31	




Another Contrast: Mostly Long Paths	


“Are the majority of paths from s to t long (>k)?”	

	
Any path might work	


	
There are lots of them	

	
I only need one	


	
If I knew one I could describe it ���
succinctly, e.g., “go from A to node���
2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I���
see an edge from A to 2 and from ���
2 to 42... and total length > k”	

	
And if there isn’t a long path, I wouldn’t be fooled …	
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Yes!	
 No, this is a 
collective 
property of the 
set of all paths in 
the graph, and no 
one path 
overrules the rest	




Relating P to NP 
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NP!

P!

34 

NP = Polynomial-time 
verifiable 

 
P   = Polynomial-time 

solvable 
 

P ⊆ NP: “verifier” is 
just the P-time alg; 
ignore “hint” 

 

Complexity Classes 
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The most obvious algorithm for most of these 
problems is brute force: 

try all possible hints; check each one to see if it works. 
Exponential time: 

2n truth assignments for n variables 

n! possible TSP tours of n vertices 

     possible k element subsets of n vertices 

etc. 

…and to date, every alg, even much less-obvious 
ones, are slow, too  

!
"

#
$
%

&
k
n

Solving NP problems without hints 
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nk!

2nk!

accept 

Needle  
in the  

haystack 

P vs NP vs Exponential Time 

Theorem: Every problem in 
NP can be solved 
(deterministically) in 
exponential time 
 
Proof: “hints” are only nk 
long; try all 2nk possibilities, 
say, by backtracking.  If any 
succeed, answer YES; if  
all fail, answer NO. 
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NP!

P!

Exp!
And  
   worse! 

P and NP 

Every problem in P is in NP 
one doesn’t even need a hint for 
problems in P so just ignore any 
hint you are given 
 

Every problem in NP is in 
exponential time 
 
I.e., P ⊆ NP ⊆ Exp 
We know P ≠ Exp, so either 
P ≠NP, or NP ≠ Exp (most 
likely both) 
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Does P = NP?	


This is the big open question!	

To show that P = NP, we have to show that every 
problem that belongs to NP can be solved by a 
polynomial time deterministic algorithm.  	


Would be very cool, but no one has shown this yet.	

(And it seems unlikely to be true.)	

(Also seems daunting: there are infinitely many problems in 
NP; do we have to pick them off one at a time…?)	
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More History – As of 1970	


Many of the above problems had been studied for decades	

All had real, practical applications	

None had poly time algorithms; exponential was best known	

	

But, it turns out they all have a very deep similarity under 
the skin	




 
Euler Tour 
2-SAT 
2-Coloring 
Min Cut 
Shortest Path 
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Hamilton Tour 
3-SAT 
3-Coloring 
Max Cut 
Longest Path 

Similar pairs; seemingly 
different computationally!

Superficially different; 
sim

ilar com
putationally!

Some Problem Pairs 
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P vs NP 

Theory 
P = NP ? 
Open Problem! 
I bet against it 
 

Practice 
Many interesting, useful, 
natural, well-studied 
problems known to be 
NP-complete 
With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances 



NP: Summary so far 

P = “poly time solvable” 
NP = “poly time verifiable” (nondeterministic poly time solvable) 
Defined only for decision problems, but fundamentally about 

search: can cast many problems as searching for a poly size, 
poly time verifiable “solution” in a 2poly size “search space”.   

Examples:  
is there a big clique? Space = all big subsets of  vertices; solution = 

 one subset; verify = check all edges 
is there a satisfying assignment?  Space = all assignments; 

 solution = one asgt; verify = eval formula 

Sometimes we can do that quickly (is there a small spanning 
tree?); P = NP would mean we could always do that. 
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Reduction 
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Reductions: a useful tool	


Definition: To “reduce A to B” means to solve A, 
given a subroutine solving B.	

	

Example: reduce MEDIAN to SORT	


Solution: sort, then select (n/2)nd	


Example: reduce SORT to FIND_MAX	

Solution: FIND_MAX, remove it, repeat	


Example: reduce MEDIAN to FIND_MAX	

Solution: transitivity: compose solutions above.	
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Another Example of Reduction  

reduce BIPARTITE_MATCHING to   MAX_FLOW 
 

s t 

All capacities = 1 

Is there a flow of size k? 
u v 

Is there a matching of size k? 

f 
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“complexity of A” ≤ “complexity of B” + “complexity of reduction” !

P-time Reductions: What, Why	


Definition: To reduce A to B means to solve A, 
given a subroutine solving B.	

	


Fast algorithm for B implies fast algorithm for A	

(nearly as fast; takes some time to set up call, etc.)	

	


If every algorithm for A is slow, then no algorithm 
for B can be fast.	
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Polynomial-Time Reductions 

Definition: Let A and B be two problems. 
We say that A is polynomially (mapping) reducible to 
B (A  ≤p B) if there exists a polynomial-time 
algorithm f that converts each instance x of problem 
A to an instance f(x) of B such that: 
 
x is a YES instance of A  iff  f(x) is a YES instance of B 

 
x ∈ A   ⇔   f(x) ∈ B  
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polynomial	


W
hy

 th
e 

no
ta

tio
n?
	


Polynomial-Time Reductions (cont.) 

Defn: A ≤p B  “A is polynomial-time reducible to B,” 
iff there is a polynomial-time computable function f 
such that:   x ∈ A   ⇔   f(x) ∈ B  
 

“complexity of A” ≤ “complexity of B” + “complexity of f“ 
 

(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P  
(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P   
(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity) 
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Using an Algorithm for B to Solve A 

Algorithm  
to compute f 

x Algorithm  
to solve B 

f(x) f(x) ∈ B? x ∈ A? 

Algorithm to solve A 

“If A ≤p
 B, and we can solve B in polynomial time, 

then we can solve A in polynomial time also.” 

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).   
How long does the above algorithm for A take? 
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Two definitions of “A ≤p B”	


Book uses more general definition: “could solve A ���
in poly time, if I had a poly time subroutine for B.”	


Defn on previous slides is special case where you 
only get to call the subroutine once, and must 
report its answer.	


This special case is used in ~98% of all reductions	


Largely irrelevant for this course, but if you seem to need 1st 
defn, e.g. on HW, there’s perhaps a simpler way…	


K
ar

p 
   

   
   

C
oo

k	




SAT and Independent Set 
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Input: Undirected graph G = (V, E), integer k. 
Output: True iff there is a subset I of V of size ≥ k 
such that no edge in E has both end points in I. 
 
Example: Independent Set of size ≥ 2. 
 
 
In NP?  Exercise 
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Another NP problem:  
Independent Set 
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3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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k=3 

3SAT ≤p IndpSet  

    
what indp sets? 

how large? 
 how many? 
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k=3 

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p IndpSet  

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3) 
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f                                                                           = 
        

3-SAT Instance:!
– Variables: x1, x2, …     !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

IndpSet Instance:!
–  k = q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }!

3SAT ≤p IndpSet  
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k=3 

3SAT ≤p IndpSet  

    



Correctness of “3SAT ≤p IndpSet” 

Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group, plus 
complementary literals (x, ¬x). Output graph G plus integer k = number of 
clauses.  Note: f does not know whether formula is satisfiable or not; does not know if 
G has k-IndpSet; does not try to find satisfying assignment or set. 
Correctness: 
 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.   
 • Show c in 3-SAT iff f(c)=(G,k) in IndpSet:  
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Add 
corresponding node of each triangle to set.  Show it is an IndpSet: 1 per triangle 
never conflicts w/ another in same triangle; only true literals (but perhaps not all 
true literals) picked, so not both ends of any (x, ¬x) edge. 
(⇐) Given a k-Independent Set in G, selected labels define a valid (perhaps 
partial) truth assignment since no (x, ¬x) pair picked.  It satisfies c since there is 
one selected node in each clause triangle (else some other clause triangle has > 1 
selected node, hence not an independent set.) 
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(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p IndpSet” 

Suppose we had a fast algorithm  
for IndpSet, then we could  
get a fast algorithm for 3SAT: 

Given 3-CNF formula w, build Independent 
Set instance y = f(w) as above, run the fast  
IS alg on y; say “YES, w is satisfiable” iff IS alg says “YES, y 
has a Independent Set of the given size” 

On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
Independent Set either. 



“3SAT ≤p IndpSet” Retrospective	


Previous slides: two suppositions	

Somewhat clumsy to have to state things that way.	


Alternative: abstract out the key elements, give it a name 
(“polynomial time mapping reduction”), then properties like 
the above always hold. 	
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NP-completeness 
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NP-Completeness 

Definition: Problem B is NP-hard if 
every problem in NP is polynomially 
reducible to B. 
 
Definition: Problem B is NP-complete 
if: 

(1) B belongs to NP, and  
(2) B is NP-hard. 

NP!

P!

Exp!

NP-Hard 

NP-Complete 



NP-completeness (cont.)	


Thousands of important problems have been shown 
to be NP-complete.	

	

The general belief is that there is no efficient 
algorithm for any NP-complete problem, but no 
proof of that belief is known. 	

	

Examples: SAT, clique, vertex cover, IndpSet, Ham 
tour, TSP, bin packing… Basically, everything we’ve 
seen that’s in NP but not known to be in P	
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Proving a problem is NP-complete	


Technically, for condition (2) we have to show that 
every problem in NP is reducible to B.  ���
(Sounds like a lot of work!)	

For the very first NP-complete problem (SAT) this 
had to be proved directly. 	

However, once we have one NP-complete problem, 
then we don’t have to do this every time.	

Why? Transitivity.	




67	


Alt way to prove NP-completeness 

Lemma: Problem B is NP-complete if: 
(1)  B belongs to NP, and  
(2’) A is polynomial-time reducible to B, for some problem 
A that is NP-complete. 
 

That is, to show NP-completeness of a new 
problem B in NP, it suffices to show that SAT or 
any other NP-complete problem is polynomial-time 
reducible to B. 
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Ex: IndpSet is NP-complete 

3-SAT is NP-complete (S. Cook; see below) 
3-SAT ≤p IndpSet 
IndpSet is in NP  
Therefore IndpSet is also NP-complete 
 
So, poly-time algorithm for IndpSet would give poly-
time algs for everything in NP 

we showed this earlier 



More Reductions 

SAT to Subset Sum (Knapsack) 
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Subset-Sum, AKA Knapsack 

KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C } 
 
wi’s and C encoded in radix r ≥ 2.  (Decimal used in 

following example.) 
 
Theorem:  3-SAT  ≤p  KNAP 
Pf: given formula with p variables & q clauses, build KNAP instance with  

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal” 
weights, H.O. p digits mark which variable; L.O. q digits show which 
clauses contain it. Two “slack” weights per clause mark that clause. 
See example below. 
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3-SAT  ≤p  KNAP 

Variables Clauses 
x y z (x ∨ y ∨ z)  (¬x ∨ y ∨ ¬z)  (¬x ∨ ¬y ∨ z)  

Li
te

ra
ls

 w1  (  x) 1 0 0 1 0 0 
w2  (¬x)  1 0 0 0 1 1 
w3  (  y) 1 0 1 1 0 
w4  (¬y) 1 0 0 0 1 
w5  ( z) 1 1 0 1 
w6  (¬z) 1 0 1 0 

Sl
ac

k 

w7  (s11) 1 0 0 
w8  (s12) 1 0 0 
w9  (s21) 1 0 
w10 (s22) 1 0 
w11 (s31) 1 
w12 (s32) 1 
C 1 1 1 3 3 3 
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Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)   



Correctness 

Poly time for reduction is routine; details omitted.  Again note that it does 
not look at satisfying assignment(s), if any, nor at subset sums, but the 
problem instance it builds captures one via the other...  

If formula is satisfiable, select the literal weights corresponding to the true 
literals in a satisfying assignment. If that assignment satisfies k literals in a 
clause, also select (3 - k) of the “slack” weights for that clause.  Total = C. 

Conversely, suppose KNAP instance has a solution. Columns are decoupled 
since ≤ 5 one’s per column, so no “carries” in sum (recall – weights are 
decimal).  Since H.O. p digits of C are 1, exactly one of each pair of literal 
weights included in the subset, so it defines a valid assignment. Since L.O. 
q digits of C are 3, but at most 2 “slack” weights contribute to each, at 
least one of the selected literal weights must be 1 in that clause, hence the 
assignment satisfies the formula. 
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More Reductions 

SAT to Undirected Hamilton Path 
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Example: 

3-SAT ≤p UndirectedHamPath 

(Note: this is not 
the same as the 
reduction given in 
the book.)	


(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)  	


x ∨ y 

¬x ∨ y ¬x ∨ ¬y 

s t 
¬x 	
 ¬y	


x 	
 y	
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Ham Path Gadget 
X 

Many copies of this 12-node gadget, each with one or more edges 
connecting each of the 4 corners to other nodes or gadgets (but no 
other edges to the 8 “internal” nodes). 

Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as 
shown); the other (by symmetry) 0→0’ 

Pf: Note *: at 1st visit to any column, must next go to middle node in column, else 
it will subsequently become an untraversable “dead end.”   
WLOG, suppose enter at 1.  By *, must then go down to 0.  2 cases: 

Case a: (top left) If next move is to right, then * forces path up, left is blocked, so 
right again, * forces down, etc; out at 1’. 

Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’.  * forces 
next move to be up/down to the other of 0’/1’.  Must then go left to reach the 
2 middle columns,  but there’s no exit from them.  So case b is impossible. 

1 

0 

1’ 

0’ 0’ 

1 

0 

1’ 
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3-SAT ≤p UndirectedHamPath 

Time for the reduction: to be computable in poly time it is necessary (but 
not sufficient) that G’s size is polynomial in n, the length of the formula. 
Easy to see this is true, since G has q + 12 p + 13 m + 1 = O(n) vertices, 
where q is the number of clauses, p is the number of instances of literals, 
and m is the number of variables.  Furthermore, the structure is simple 
and regular, given the formula, so easily / quickly computable, but details 
are omitted. (More detail expected in your homeworks, e.g.)  Again, 
reduction builds G, doesn’t solve it. 

x ∨ y 

¬x ∨ y ¬x ∨ ¬y 

s t 
¬x 	
 ¬y	


y	
x 	
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Correctness, I 

Ignoring the clause nodes, there are 2m s-t paths along the 
“main chain,” one for each of 2m assignments to m variables. 
If f is satisfiable, pick a satisfying assignment, and pick a true 
literal in each clause.  Take the corresponding “main chain” 
path; add a detour to/from ci for the true literal chosen from 
clause i.  Result is a Hamilton path. 

…∨  xk  ∨… 

xk=T 

xk chosen in clause ci  

x ∨ y 

¬x ∨ y ¬x ∨ ¬y 

s t 
¬x 	
 ¬y	


y	
x 	
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Correctness, II 

Conversely, suppose G has a Ham path.  Obviously, the path must 
detour from the main chain to each clause node ci.  If it does not return 
immediately to the next gadget on main chain, then (by gadget properties 
on earlier slide), that gadget cannot be traversed.  Thus, the Ham path 
must consistently use “top chain” or consistently “bottom chain” exits to 
clause nodes from each variable gadget.  If top chain, set that variable 
True; else set it False.  Result is a satisfying assignment, since each clause 
is visited from a “true” literal. 

Detour only possible 
on an xk=T subpath 

X 

xk=T And must immediately return 

x ∨ y 

¬x ∨ y ¬x ∨ ¬y 

s t 
¬x 	
 ¬y	


y	
x 	


…∨  xk  ∨… 
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Cook’s Theorem 

SAT is NP-Complete 
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“NP-completeness” 

Cool concept, but are there  
any such problems? 

 
Yes! 

 
Cook’s theorem: SAT is NP-complete 
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Why is SAT NP-complete? 

Cook’s proof is somewhat involved. I’ll sketch it 
below.  But its essence is not so hard to grasp: 
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Encode “solution” using Boolean variables.  SAT mimics “is there a solution” 
via “is there an assignment”.  The “verifier” runs on a digital computer, and 
digital computers just do Boolean logic.  “SAT” can mimic that, too, hence 
can verify that the assignment actually encodes a solution.	


Generic “NP” problems: expo. search–	

is there a poly size “solution,” verifiable 
by computer in poly time	


“SAT”:  is there a poly size 
assignment (the hint) satisfying 
the formula (the verifier)



Examples	


Again, Cook’s theorem does this for generic NP problems, 
but you can get the flavor from a few specific examples	
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3-Coloring ≤p SAT      

Given G = (V, E) 
∀ i in V, variables ri, gi, bi encode color of i 
 
∧i ∈ V [(ri ∨ gi ∨ bi) ∧  

 (¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧ 

∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)] 
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adj nodes ⇔ diff colors	

no node gets 2 	

every node gets a color	


hi
nt

 
ve

ri
fie

r 

Equivalently: 
(¬(ri  ∧ gi)) ∧ (¬(gi  ∧ bi)) ∧ (¬(bi  ∧ ri)) ∧ 
∧(i,j) ∈ E [(ri ⇒ ¬rj) ∧ (gi ⇒ ¬gj) ∧ (bi ⇒ ¬bj)] 



Independent Set ≤p SAT 

Given G = (V, E) and k 
∀ i in V, variable xi encodes inclusion of i in IS 
 

 

∧(i,j) ∈ E (¬xi ∨ ¬xj) ∧ “number of True xi is ≥ k”  
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every edge has one end 
or other not in IS ���

(no edge connects 2 in IS)	


possible in 3 CNF, but technically 
messy; basically, count 1’s	


hi
nt

 
ve

ri
fie

r 



Hamilton Circuit ≤p SAT 

Given G = (V, E) [encoded, e.g.: eij =1 ⇔ edge (i,j)] 
∀ i,j in V, variables xij, encode “j follows i in the tour” 
 

 

∧(i,j) (xij ⇒ eij) ∧ “it’s a permutation” ∧ “cycle length = n” 

the path follows 
actual edges	


every row/column has 
exactly 1 one bit	


Xn = I, no smaller 
power k has Xkii=1	


hi
nt

 
ve

ri
fie

r 
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Perfect Matching ≤p SAT 

Given G = (V, E) [encoded, e.g.: eij =1 ⇔ edge (i,j)] 
∀ i<j in V, variable xij, encodes “edge i,j is in matching” 
 

(∧(i<j) (xij ⇒ eij)) ∧ (∧(i<j<k) (xij ⇒ ¬xik) ) ∧ (∧i (∨j xij)) 

matching edges���
are actual edges	


all vertices ���
are matched	


hi
nt

 
ve

ri
fie

r 
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it’s a matching: if edge 
(i,j) included, then ���

(i,k) excluded	




Cook’s Theorem 

Every problem in NP is reducible to SAT 
 
Idea of proof is extension of above examples, but done in a 
general way, based on the definition of NP – show how the 
SAT formula can simulate whatever (polynomial time) 
computation the verifier does. 
 
Cook proved it directly, but easier to see via an intermediate 
problem – Satisfiability of Circuits rather than Formulas	
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Boolean Circuits	


	

	


	

	


Directed acyclic graph (yes, “circuit” is a misnomer…)	


Vertices = Boolean logic gates (∧, ∨, ¬, …) + inputs!
Multiple input bits (x1, x2, … )	


Single output bit (w)	

Gate values as expected (e.g., propagate vals by depth to xi’s)	


	


∧! ¬! ∨!
x1!

x2!

w!

88	




Boolean Circuits and Complexity	


Two Problems: 
 Circuit Value: given a circuit and an assignment of  
values to its inputs, is its output = 1? 
 Circuit SAT: given a circuit, is there an assignment of values 
to its inputs such that output =1?  

Complexity: 
 Circuit Value Problem is in P 
 Circuit SAT Problem is in NP 

Given implementation of computers via Boolean circuits, it 
may be unsurprising that they are complete in P/NP, resp. 
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Sk
et

ch
ed

 b
el

ow
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Detailed Logic Diagram, 
Intelorola Pentathlon® 66000 

Registers/Latches/Memory	


Combinational Logic, ���
Large Rat’s Nest of	


Really, Really, ���
Fast Clock	




91	


P Is Reducible To The 
Circuit Value Problem 

Registers/Latches/Memory	


 Combinational Logic, ���
Large Rat’s Nest of	


Really, 
Really, ���

Fast Clock	


Combinational Logic	


Combinational Logic	


Combinational Logic	


Accept?	


T
	


T	

…     Input   …	
0 1 0 0 1 1 



…Input…	
0 1 0 1 ??..Hint..?? 
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NP Is Reducible To The 
Circuit Satisfiability Problem 

Registers/Latches/Memory	


 Combinational Logic, ���
Large Rat’s Nest of	


Really, 
Really, ���

Fast Clock	


Combinational Logic	


Combinational Logic	


Combinational Logic	


Accept?	


T
	


T	


The Verifier  
Algorithm 



Correctness of NP ≤p CircuitSAT 

Fix an arbitrary NP-problem, a verifier alg V(x,h) for it, and a 
bound nk on hint length/run time of V,  show: 

1) In poly time, given x, can output a circuit C as above, 
2) ∃ h s.t. V(x,h)=“yes” ⇒ C is satisfiable (namely by h), and 
3) C is satisfiable (say, by h) ⇒ ∃ h s.t. V(x,h)=“yes” 

 
1)  is perhaps very tedious, but mechanical–you are 

“compiling” the verifier’s code into hardware (just enough 
hardware to handle inputs of length |x|) 

2) & 3) exploit the fact that C simulates V, with C’s “hint bit” 
inputs exactly corresponding to V’s input h. 
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(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3	

	


Replace with 3-CNF Equivalent:	

	

	

	

	

	

	


∧! ¬! ∨!
x1!

x2! w1! w2! w3!

Circuit-SAT ���
≤p 3-SAT	


x1	
 x2	
 w1	
 x1∧x2	
 ¬(w1⇔(x1∧x2))	


0	
 0	
 0	
 0	
 0	


0	
 0	
 1	
 0	
 1	
 ← ¬x1 ∧ ¬x2 ∧   w1	


0	
 1	
 0	
 0	
 0	


0	
 1	
 1	
 0	
 1	
 ← ¬x1 ∧    x2 ∧   w1	


1	
 0	
 0	
 0	
 0	


1	
 0	
 1	
 0	
 1	
 ←   x1 ∧  ¬x2 ∧   w1	


1	
 1	
 0	
 1	
 1	
 ←   x1 ∧     x2 ∧ ¬w1	


1	
 1	
 1	
 1	
 0	


¬clause 	

↓���

 Truth Table	

↓	


 DNF  	

↓	


 DeMorgan	

↓	


CNF	


∧! ¬! ∨!f(                   ) = (x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨¬x2∨w1)…	


Q.  Why build truth table clause-by-clause vs whole formula?  
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A:  So n*23 vs 2n rows  
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Correctness of “Circuit-SAT ≤p 3-SAT” 

Summary of reduction function f: Given circuit, add variable for every 
gate’s value, build clause for each gate, satisfiable iff gate value variable is 
appropriate logical function of its input variables, convert each to CNF 
via standard truth-table construction. Output conjunction of all, plus 
output variable.  Note: as usual, does not know whether circuit or formula are 
satisfiable or not; does not try to find satisfying assignment. 
Correctness: 
Show f is poly time computable: A key point is that formula size is linear 
in circuit size; mapping basically straightforward; details omitted.   
Show c in Circuit-SAT iff f(c) in SAT:  
(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by 
evaluating the circuit on xi’s gate by gate.  Show this satisfies f(c). 
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s satisfy c 
(with gate values given by wi’s). 
Thus, 3-SAT is NP-complete. 
 



Coping with NP-hardness 
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Coping with NP-Completeness	


Is your real problem a special subcase?	

E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto  3- vs 2-
coloring	

E.g. only need planar-/interval-/degree 3 graphs, trees,…?	


Guaranteed approximation good enough?	

E.g. Euclidean TSP within 1.5 * Opt in poly time	


Fast enough in practice (esp. if n is small), 	

E.g. clever exhaustive search like dynamic programming, 
backtrack, branch & bound, pruning	


Heuristics – usually a good approx and/or fast	
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5 

3 

4 6 

4 7 
2 

5 

8 

           Example:	

	
          b = 34	


NP-complete problem: TSP	


Input: An undirected graph 
G=(V,E) with integer edge 
weights, and an integer b.	

	


Output: YES iff there is a 
simple cycle in G passing 
through all vertices (once), 
with total cost ≤ b.	




Recall NN Heuristic–go to nearest unvisited vertex	

	

	

	

Fact: NN tour can be about (log n) x opt, i.e. ���
���
���
���
	

(above example is not that bad)	
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€ 

limn→∞

NN
OPT

→∞

TSP - Nearest Neighbor Heuristic	




A TSP tour visits all vertices, so contains a spanning tree, so 
cost of min spanning tree < TSP cost.	


Find MST	


Find “DFS” Tour	


Shortcut	


TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP	


5 

4 

2 
5 

6 

4 

7 

8 

3 

2x Approximation to EuclideanTSP	
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≤5+2+3+5	


≤4+3	




1.5x Approximation to EuclideanTSP	


Find MST (solid edges)	


Connect odd-degree tree vertices (dotted)	


Find min cost matching among them (thick)	


Find Euler Tour (thin)	


Shortcut (dashed)	


Shortcut  ≤ ET ≤ MST + TSP/2 < 1.5* TSP	
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Cost of matching ≤ TSP/2 
(next slide)	


5 

3 

4 

2 
5 



       Matching ≤ TSP/2	


Oval = TSP	


Big dots = odd tree nodes ���
(Exercise: show every graph has an ���
even number of odd degree vertices) 	


Blue, Green = 2 matchings	


Blue + Green ≤ TSP (triangle inequality)	


So min matching ≤ TSP/2	
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P / NP Summary 
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P 

Many important problems are in P: solvable in deterministic 
polynomial time 

 Details are the fodder of algorithms courses.  We’ve seen a few 
examples here, plus many other examples in other courses 

Few problems not in P are routinely solved;  
 For those that are, practice is usually restricted to small instances, or 
we’re forced to settle for approximate, suboptimal, or heuristic 
“solutions” 

A major goal of complexity theory is to delineate the 
boundaries of what we can feasibly solve 
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NP 

The tip-of-the-iceberg in terms of problems conjectured not 
to be in P, but a very important tip, because 

a) they’re very commonly encountered, probably because 
b) they arise naturally from basic “search” and 

“optimization” questions. 
 
Definition: poly time verifiable; “guess and check”, “is there 

a…” – also useful 
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NP-completeness 

Defn & Properties of ≤p 
 
A is NP-hard: everything in NP reducible to A 
A is NP-complete: NP-hard and in NP 

 “the hardest problems in NP” 
 “All alike under the skin” 

Most known natural problems in NP are complete 
 #1: 3CNF-SAT 
 Many others: Clique, VertexCover, HamPath, Circuit-SAT,… 
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NP!

P!

Exp!
Worse… 

NP-C Summary 

Big-O     –  good 
P           –  good 
Exp        –  bad 
Exp, but hints help?  NP 
NP-hard, NP-complete – bad (I bet) 
To show NP-complete – reductions 
NP-complete = hopeless? – no, but you  
  need to lower your expectations:  
  heuristics, approximations and/or small instances. 



Common Errors in  
NP-completeness Proofs 

Backwards reductions 
Bipartiteness ≤p SAT is true, but not so useful.  
(XYZ ≤p SAT shows XYZ in NP, doesn’t show it’s hard.) 

Sloooow Reductions  
“Find a satisfying assignment, then output…” 

Half Reductions 
E.g., delete clause nodes in HAM reduction.  It’s still true 
that “satisfiable ⇒ G has a Ham path”, but path doesn’t 
necessarily give a satisfying assignment. 
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“I can’t find an efficient algorithm, but neither can all these 
famous people.”                                    [Garey & Johnson, 1979] 

The Big Boss is 

IN 
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NP-completeness might save 
your job someday … 
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Beyond NP	


Many complexity classes are worse, e.g. time 22n
, 222n

, …	

Others seem to be “worse” in a different sense, e.g., not in 

NP, but still exponential time.  E.g., let 	


	
Lp = “assignment y satisfies formula x”, ∈ P	

Then :	


	
SAT = { x | ∃y ⟨x,y⟩∈LP }	

	
UNSAT = { x | ∀y ⟨x,y⟩∉LP }	


	
QBFk = { x | ∃y1∀y2∃y3…   k yk ⟨x,y1…yk⟩∈LP }	

	
QBF∞ = { x | ∃y1∀y2∃y3…        ⟨x,y1…   ⟩∈LP }	


	


Q 
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ΣP2 :  { x | ∃y∀z ⟨x,y,z⟩∈LP }	

	


⋮	


ΔP0:	

P	


The “Polynomial Hierarchy”	


ΔP1: P time���
given SAT	


ΣP1 (NP): 	

{ x | ∃y ⟨x,y⟩∈LP }	

SAT, Clique, VC, HC, Knap,… 	


ΠP1
 (co-NP): 	


{ x | ∀y ⟨x,y⟩∈LP } 	

UNSAT,…	


ΠP2
 :  { x | ∀y∃z ⟨x,y,z⟩∈LP }	


	


Potential Utility: It is often easy to give such a quantifier-based characterization 
of a language; doing so suggests (but doesn’t prove) ���

whether it is in P, NP, etc. and suggests candidates for reducing to it.	
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Examples	


QBFk in ΣPk	


	


Given graph G, integers j & k, is there a set U of ≤ j vertices 
in G such that every k-clique contains a vertex in U?  	


	

Given graph G, integers j & k, is there a set U of ≥ j vertices 

in G such removal of any k edges leaves a Hamilton path 
in U?  	


	


113	




Space Complexity	


DTM M has space complexity S(n) if it halts on all inputs, and 
never visits more than S(n) tape cells on any input of 
length n.	


NTM …on any input of length n on any computation path.	

	


DSPACE(S(n)) = { L | L acc by some DTM in space O(S(n)) }	


	

NSPACE(S(n)) = { L | L acc by some NTM in space O(S(n)) }	
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Model-independence	


As with Time complexity, model doesn’t matter much.  E.g.:	

	


SPACE(n) on DTM ≈ O(n) bytes on your laptop	

	


Why? Simulate each by the other.	
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Space vs Time	


Time T ⊆ Space T	

	


	
Pf: not enough time to use more space	

	


Space T ⊆ Time 2cT	


	


	
Pf: if run longer, looping	


116	




Space seems more powerful	


Intuitively, space is reusable, time isn’t	

	


Ex.: SAT ∈ DSPACE(n)	

	


	
Pf: try all possible assignments, one after the other	


	

Even more: ���
QBFk =  { ∃y1∀y2∃y3…   k yk x | ⟨x,y1…yk⟩∈LP }∈ DSPACE(n)  ���
QBF∞ = { ∃y1∀y2∃y3…         x | ⟨x,y1… ⟩∈LP } ∈ DSPACE(n)	


	


Q 
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PSPACE = Space(nO(1))	

	


NP ⊆ PSPACE	

	


	
pf: depth-first search of NTM computation tree	
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Games	


2 player “board” games	

E.g., checkers, chess, tic-tac-toe, nim, go, …	


A finite, discrete “game board”	

Some pieces placed and/or moved on it	


“Perfect information”: no hidden data, no randomness	


Player I/Player II alternate turns	

Defined win/lose configurations (3-in-a-row; checkmate; …)	


Winning strategy: 	

∃move by player 1 ∀moves by II ∃ a move by I ∀… I wins.	


119	




Config:	

  Where are pieces	


  Relevant history	

  Who goes next	


Play:	


  All moves 	


	


       Game Tree	


∃	

	

	

	

∀	

	

	

∃	

	

∀	


x x 
x 

x	

o	
 x	
o	


x	

o	


x	

o	


x	
 o	


1	
 1	
 1	
0 1	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
Win/lose: 
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Config:	

  Where are pieces	


  Relevant history	

  Who goes next	


Play:	


  All moves 	

 	


       Game Tree	


∃	

	

	

	

∀	

	

	

∃	

	

∀	


x 
∧	
 x 

∧	
 x ∧	


x	

o	
∨	


∨	


x	
o	

x	


o	
∨	
 x	

o	
∨	
 x	
 o	


∨	
 ∨	

∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	


1	
 1	
 1	
0 1	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
Win/lose: 
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Config:	

  Where are pieces	


  Relevant history	

  Who goes next	


Play:	


  All moves 	

 	


       Winning Strategy	


∃	

	

	

	

∀	

	

	

∃	

	

∀	


x 
∧	
 x 

∧	
 x ∧	


x	

o	
∨	


∨	


x	
o	

x	


o	
∨	
 x	

o	
∨	
 x	
 o	


∨	
 ∨	

∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	


1	
 1	
 1	
0 1	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 0	
Win/lose: 
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x 
∧	
 x 

∧	
 x ∧	


x	

o	
∨	


∨	


x	
o	

x	


o	
∨	
 x	

o	
∨	
 x	
 o	


∨	
 ∨	

∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	


1	
 1	
 1	
0 1	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
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Complexity of 2 person, perfect 
information games	


From above, IF	

	
config (incl. history, etc.) is poly size	


	
only poly many successors of one config	

	
each computable in poly time	


	
win/lose configs recognizable in poly time, and	


	
game lasts poly # moves	

THEN	


	
in PSPACE!	

Pf: depth-first search of tree, calc node values as you go.	
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TQBF ���
“True Quantified Boolean Formulas”	


TQBF = { ∃y1∀x1∃y2 … f | assignment x,y satisfies formula f }	

(each xi, yi may be one or many bits; doesn’t matter.)	


	

TQBF in PSPACE: think of it as a game between ∃, ∀; ∃ wins 

if formula satisfied.  Do DFS of game tree as in examples 
above, evaluating nodes (∧,∨) as you backtrack.	
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TQBF is PSPACE-complete���
“TQBF is to PSPACE as SAT is to NP”	


TQBF = { ∃y1∀x1∃y2 …f | assignment x,y satisfies formula f }	


Theorem: TQBF is PSPACE-complete	


Pf Idea:	

	
TQBF in PSPACE: above	


	
M an arbitrary nk space TM, show L(M)  ≤p TQBF: below	


yk: the nk-bit config “m” picked by ∃-player in round k���
xk: 1 bit; ∀-player chooses which half-path is challenged���
Formula f:  x’s select the appropriate pair of y configs; 
check that 1st moves to 2nd in one step (alá Cook’s Thm)	
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More Detail	


For “x selects a pair of y’s”, use the following trick:	

	
f1(s1,t1) =  ∃y1∀x1 g(s1,t1,y1,x1) 	


becomes	

	
∃y1∀x1 ∃s2,t2 [ ( x1  → (s2 = s1 ∧ t2 = y1)) ∧ 	


	
 	
 	
     (¬x1 → (s2 = y1 ∧ t2 = t1)) ∧ f2(s2,t2)  ]	


Here, x1 is a single bit; others represent nk-bit configs, and “=” 
means the ∧ of bitwise ↔ across all bits of a config	


The final piece of the formula becomes ∃z g(sk,tk,z), where ���
g(sk,tk,z), ~ as in Cook’s Thm, is true if config sk equals tk or moves 
to tk in 1 step according to M’s nondet choice z.	

A key point: formula is poly computable (e.g., poly length)	
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“Geography”	
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“Generalized Geography”	
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TQBF ≤p ���
Generalized ���
Geography 	
∀	


∃/∀	


∃	


∃	
 1	


And so GGEO is 
PSPACE-complete	
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∀	


∃/∀	


∃	


∃	

∃	


∀	


(if k even)	


∃	


∃	
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SPACE: Summary	


Defined on TMs (as usual) but largely model-independent	


Time T ⊆ Space T ⊆ Time 2cT	


	
Cor: NP ⊆ PSPACE	


Savitch: Nspace(S) ⊆ Dspace(S2)	


	
Cor: Pspace = NPspace (!)	


TQBF is PSPACE-complete (analog: SAT is NP-complete)	


PSPACE and games (and games have serious purposes: auctions, 
allocation of shared resources, hacker vs firewall,…)	
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An Analogy	


NP is to PSPACE as Solitaire is to Chess	

I.e., NP probs involve finding a solution to a fixed, static puzzle 

with no adversary other than the structure of the puzzle 
itself	


PSPACE problems, of course, just plain use poly space.  But 
they often involve, or can be viewed as, games where an 
interactive adversary dynamically thwarts your progress 
towards a solution	


The former, tho hard, seems much easier than the later–part of 
the reason for the (unproven) supposition that NP ⊊ 
PSPACE	
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