
1	

CSE 521���
Algorithms	

	

NP-Completeness	

(Chapter 8)	

Polynomial Time

2	

3	

The class P	

Definition: P = the set of (decision) problems
solvable by computers in polynomial time, i.e.,	

	
T(n) = O(nk) for some fixed k (indp of input).	

These problems are sometimes called tractable
problems.	

	

Examples: sorting, shortest path, MST, connectivity,
RNA folding & other dyn. prog., flows & matching���
– i.e.: most of this qtr	

(exceptions: Change-Making/Stamps, Knapsack, TSP)	

	

Why “Polynomial”?	

Point is not that n2000 is a nice time bound, or that the
differences among n and 2n and n2 are negligible.	

	

Rather, simple theoretical tools may not easily capture such
differences, whereas exponentials are qualitatively different
from polynomials and may be amenable to theoretical
analysis.	

“My problem is in P” is a starting point for a more detailed analysis	

“My problem is not in P” may suggest that you need to shift to a more
tractable variant 	

4	

5	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	

 	

Decision vs Search Problems

6	

7	

Problem Types

A clique in an undirect graph G=(V,E) is a
subset U of V such that every pair of
vertices in U is joined by an edge.

E.g., mutual friends on facebook, genes that vary together

An optimization problem: How large is the largest clique in G

A search problem: Find the/a largest clique in G
A search problem: Given G and integer k, find a k-clique in G
A decision problem: Given G and k, is there a k-clique in G
A verification problem: Given G, k, U, is U a k-clique in G

Decision Problems	

So far we have mostly considered search and optimization
problems – “Find a…” or “How large is the largest…”	

Below, we mainly restrict discussion to decision problems -
problems that have an answer of either yes or no.	

Loss of generality? Not really	

Usually easy to convert to decision problem:	

If we know how to solve the decision problem, ���
then we can usually solve the original problem. 	

Most importantly, decision problem is easier (at least, not harder), so a
lower bound on the decision problem is a lower bound on the
associated search/optimization problem.	

	
 8	

Interesting possible exception:

compositeness vs factoring.

9	

“Problem” – the general case	

Ex: The Clique Problem: Given a graph G and an integer k,
does G contain a k-clique?	

“Problem Instance” – the specific cases	

Ex: Does contain a 4-clique? (no)	

Ex: Does contain a 3-clique? (yes)	

Problems as Sets of “Yes” Instances	

Ex: CLIQUE = { (G,k) | G contains a k-clique }	

E.g., (, 4) ∉ CLIQUE	

E.g., (, 3) ∈ CLIQUE	

Some Convenient Technicalities	

Beyond P

10	

11	

Boolean Satisfiability

Boolean variables x1, ..., xn
taking values in {0,1}. 0=false, 1=true

Literals
xi or ¬xi for i = 1, ..., n

Clause
a logical OR of one or more literals
e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

CNF formula (“conjunctive normal form”)
a logical AND of a bunch of clauses

12	

Boolean Satisfiability

CNF formula example
(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)

If there is some assignment of 0’s and 1’s to the
variables that makes it true then we say the formula
is satisfiable

the one above is, the following isn’t
x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

Satisfiability: Given a CNF formula F, is it satisfiable?

13	

Satisfiable?
(
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	

(
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 ¬z	
)	

(
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	

(
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 ¬z	
)	

14	

More Problems

Independent-Set:
Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is
an integer, for which there is a subset U of V
with |U| ≥ k such that no pair of vertices in U is
joined by an edge.

Clique:
Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is
an integer k, for which there is a subset U of V
with |U| ≥ k such that every pair of vertices in U
is joined by an edge.

15	

More Problems

Euler Tour:
Graphs G=(V,E) for which there is a cycle traversing each
edge once.

Hamilton Tour:
Graphs G=(V,E) for which there is a simple cycle of length
|V|, i.e., traversing each vertex once.

TSP:
Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is
an integer, such that there is a Hamilton tour of G with
total weight ≤ k.

More Problems

Short Path:
 4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with

vertices s, t, and an integer k, for which there is a path
from s to t of length ≤ k

Long Path:
 4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with

vertices s, t, and an integer k, for which there is an acyclic
path from s to t of length ≥ k

16	

17	

More Problems

3-Coloring:
Graphs G=(V,E) for which there is an assignment of at most
3 colors to the vertices in G such that no two adjacent
vertices have the same color.

Example:

18	

Beyond P?	

There are many natural, practical problems for
which we don’t know any polynomial-time
algorithms:	

 e.g. CLIQUE: 	

Given an undirected graph G and an integer k, does G contain
a k-clique?	

e.g., most of others just mentioned (excl: shortpath, Euler)	

	

	

Lack of imagination or intrinsic barrier?	

NP

19	

Review: Some Problems

Quadratic Diophantine Equations
Clique
Independent Set
Euler Tour
Hamilton Tour
TSP
3-Coloring
Partition
Satisfiability
Short Paths
Long Paths

All of the form: Given
input X Is there a Y
with property Z

20	

21	

Common property of these problems:
Discrete Exponential Search

 Loosely–find a needle in a haystack
“Answer” to a decision problem is literally just yes/no, but
there’s always a somewhat more elaborate “solution” (aka
“hint” or “certificate”; what the search version would
report) that transparently‡ justifies each “yes” instance (and
only those) – but it’s buried in an exponentially large search
space of potential solutions.

‡Transparently = verifiable in polynomial time

22	

Defining NP

A decision problem L is in NP iff there is a polynomial time
procedure v(-,-), (the “verifier”) and an integer k such that

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES
and
for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES

(“Hints,” sometimes called “certificates,” or “witnesses”, are
just strings. Think of them as exactly what the search version
would output.)

Example: Clique

“Is there a k-clique in this graph?”
any subset of k vertices might be a clique
there are many such subsets, but I only need to find one
if I knew where it was, I could describe it succinctly, e.g.
“look at vertices 2,3,17,42,...”,
I’d know one if I saw one: “yes, there are edges between
2 & 3, 2 & 17,... so it’s a k-clique”
this can be quickly checked
And if there is not a k-clique, I wouldn’t be fooled by a
statement like “look at vertices 2,3,17,42,...”

23	

24	

More Formally: CLIQUE is in NP

procedure v(x,h)
if
 x is a well-formed representation of a graph
 G = (V, E) and an integer k,
and
 h is a well-formed representation of a k-vertex
 subset U of V,
and
 U is a clique in G,
then output “YES”
else output “I’m unconvinced”

Important note: this answer does
NOT mean x ∉ CLIQUE; just
means this h isn’t a k-clique (but
some other might be). 	

25	

Is it correct?

For every x = (G,k) such that G contains a k-clique,
there is a hint h that will cause v(x,h) to say YES,
namely h = a list of the vertices in such a k-clique
and
No hint can fool v into saying yes if either x isn’t
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any cliques of size k (the
interesting case)
And |h| < |x| and v(x,h) takes time ~ (|x|+|h|)2

Example: SAT

“Is there a satisfying assignment for this Boolean
formula?”

any assignment might work
there are lots of them
I only need one
if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T”
I’d know one if I saw one: “yes, plugging that in, I see formula = T...”
and this can be quickly checked
And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T,
x2=F, ..., xn=F”

26	

27	

More Formally: SAT ∈ NP

Hint: the satisfying assignment A
Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)

Syntax: True iff F is a well-formed formula & A is a truth-
assignment to its variables
Satisfies: plug A into F and evaluate

Correctness:
If F is satisfiable, it has some satisfying assignment A, and
we’ll recognize it
If F is unsatisfiable, it doesn’t, and we won’t be fooled

Analysis: |A| < |F|, and time for v(F,A) ~ linear in |F|+|A|

Short Path	

“Is there a short path (< k) from s to t in this graph?”	

	
Any path might work	

	
There are lots of them	

	
I only need one	

	
If I knew one I could describe it succinctly, e.g., “go from s
to node 2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I see there’s an edge from
s to 2 and from 2 to 42... and the total length is < k”	

	
And if there isn’t a short path, I wouldn’t be fooled by,
e.g., “go from s to node 2, then node 42, then ... ”	

28	

Long Path	

“Is there a long path (> k) from s to t in this graph?”	

	
Any path might work	

	
There are lots of them	

	
I only need one	

	
If I knew one I could describe it succinctly, e.g., “go from s
to node 2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I see there’s an edge from
s to 2 and from 2 to 42... and the total length is > k”	

	
And if there isn’t a long path, I wouldn’t be fooled by, e.g.,
“go from s to node 2, then node 42, then ... ”	

29	

Two Final Points About “Hints” 	

1.  Hints/verifiers aren’t unique. The “… there is a …”
framework often suggests their form, but many
possibilities	

	
“is there a clique” could be verified from its vertices, or its edges, or
all but 3 of each, or all non-vertices, or… Details of the hint string
and the verifier and its time bound shift, but same bottom line	

	

2. In NP doesn’t prove its hard	

	
“Short Path” or “Small Spanning Tree” or “Large Flow” can be
formulated as “…there is a…,” but, due to very special structure of
these problems, we can quickly find the solution even without a hint.
The mystery is whether that’s possible for the other problems, too.	

30	

Contrast: problems not in NP (probably)

Rather than “there is a…” maybe it’s
“no…” or “for all…” or “the smallest/largest…”

E.g.
 UNSAT: “no assignment satisfies formula,” or

“for all assignments, formula is false”
Or
 NOCLIQUE: “every subset of k vertices is not a k-clique”

 MAXCLIQUE: “the largest clique has size k”
It seems unlikely that a single, short hint is sufficiently
informative to allow poly time verification of properties like
these (but this is also an important open problem). 31	

Another Contrast: Mostly Long Paths	

“Are the majority of paths from s to t long (>k)?”	

	
Any path might work	

	
There are lots of them	

	
I only need one	

	
If I knew one I could describe it ���
succinctly, e.g., “go from A to node���
2, then node 42, then ... ”	

	
I’d know one if I saw one: “yes, I���
see an edge from A to 2 and from ���
2 to 42... and total length > k”	

	
And if there isn’t a long path, I wouldn’t be fooled …	

32	

Yes!	
 No, this is a
collective
property of the
set of all paths in
the graph, and no
one path
overrules the rest	

Relating P to NP

33	

NP!

P!

34

NP = Polynomial-time
verifiable

P = Polynomial-time

solvable

P ⊆ NP: “verifier” is
just the P-time alg;
ignore “hint”

Complexity Classes

35	

The most obvious algorithm for most of these
problems is brute force:

try all possible hints; check each one to see if it works.
Exponential time:

2n truth assignments for n variables

n! possible TSP tours of n vertices

 possible k element subsets of n vertices

etc.

…and to date, every alg, even much less-obvious
ones, are slow, too

!
"

#
$
%

&
k
n

Solving NP problems without hints

36	

nk!

2nk!

accept

Needle
in the

haystack

P vs NP vs Exponential Time

Theorem: Every problem in
NP can be solved
(deterministically) in
exponential time

Proof: “hints” are only nk
long; try all 2nk possibilities,
say, by backtracking. If any
succeed, answer YES; if
all fail, answer NO.

37	

NP!

P!

Exp!
And
 worse!

P and NP

Every problem in P is in NP
one doesn’t even need a hint for
problems in P so just ignore any
hint you are given

Every problem in NP is in
exponential time

I.e., P ⊆ NP ⊆ Exp
We know P ≠ Exp, so either
P ≠NP, or NP ≠ Exp (most
likely both)

38	

Does P = NP?	

This is the big open question!	

To show that P = NP, we have to show that every
problem that belongs to NP can be solved by a
polynomial time deterministic algorithm. 	

Would be very cool, but no one has shown this yet.	

(And it seems unlikely to be true.)	

(Also seems daunting: there are infinitely many problems in
NP; do we have to pick them off one at a time…?)	

39	

More History – As of 1970	

Many of the above problems had been studied for decades	

All had real, practical applications	

None had poly time algorithms; exponential was best known	

	

But, it turns out they all have a very deep similarity under
the skin	

Euler Tour
2-SAT
2-Coloring
Min Cut
Shortest Path

40	

Hamilton Tour
3-SAT
3-Coloring
Max Cut
Longest Path

Similar pairs; seemingly
different computationally!

Superficially different;
sim

ilar com
putationally!

Some Problem Pairs

41	

P vs NP

Theory
P = NP ?
Open Problem!
I bet against it

Practice
Many interesting, useful,
natural, well-studied
problems known to be
NP-complete
With rare exceptions, no
one routinely succeeds in
finding exact solutions to
large, arbitrary instances

NP: Summary so far

P = “poly time solvable”
NP = “poly time verifiable” (nondeterministic poly time solvable)
Defined only for decision problems, but fundamentally about

search: can cast many problems as searching for a poly size,
poly time verifiable “solution” in a 2poly size “search space”.

Examples:
is there a big clique? Space = all big subsets of vertices; solution =

 one subset; verify = check all edges
is there a satisfying assignment? Space = all assignments;

 solution = one asgt; verify = eval formula

Sometimes we can do that quickly (is there a small spanning
tree?); P = NP would mean we could always do that.

42	

Reduction

43	

44	

Reductions: a useful tool	

Definition: To “reduce A to B” means to solve A,
given a subroutine solving B.	

	

Example: reduce MEDIAN to SORT	

Solution: sort, then select (n/2)nd	

Example: reduce SORT to FIND_MAX	

Solution: FIND_MAX, remove it, repeat	

Example: reduce MEDIAN to FIND_MAX	

Solution: transitivity: compose solutions above.	

45

Another Example of Reduction

reduce BIPARTITE_MATCHING to MAX_FLOW

s t

All capacities = 1

Is there a flow of size k?
u v

Is there a matching of size k?

f

46	

“complexity of A” ≤ “complexity of B” + “complexity of reduction” !

P-time Reductions: What, Why	

Definition: To reduce A to B means to solve A,
given a subroutine solving B.	

	

Fast algorithm for B implies fast algorithm for A	

(nearly as fast; takes some time to set up call, etc.)	

	

If every algorithm for A is slow, then no algorithm
for B can be fast.	

	

47	

Polynomial-Time Reductions

Definition: Let A and B be two problems.
We say that A is polynomially (mapping) reducible to
B (A ≤p B) if there exists a polynomial-time
algorithm f that converts each instance x of problem
A to an instance f(x) of B such that:

x is a YES instance of A iff f(x) is a YES instance of B

x ∈ A ⇔ f(x) ∈ B

48	

polynomial	

W
hy

 th
e

no
ta

tio
n?
	

Polynomial-Time Reductions (cont.)

Defn: A ≤p B “A is polynomial-time reducible to B,”
iff there is a polynomial-time computable function f
such that: x ∈ A ⇔ f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f“

(1) A ≤p B and B ∈ P ⇒ A ∈ P
(2) A ≤p B and A ∉ P ⇒ B ∉ P
(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)

49

Using an Algorithm for B to Solve A

Algorithm
to compute f

x Algorithm
to solve B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to solve A

“If A ≤p
 B, and we can solve B in polynomial time,

then we can solve A in polynomial time also.”

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).
How long does the above algorithm for A take?

50	

Two definitions of “A ≤p B”	

Book uses more general definition: “could solve A ���
in poly time, if I had a poly time subroutine for B.”	

Defn on previous slides is special case where you
only get to call the subroutine once, and must
report its answer.	

This special case is used in ~98% of all reductions	

Largely irrelevant for this course, but if you seem to need 1st
defn, e.g. on HW, there’s perhaps a simpler way…	

K
ar

p

C
oo

k	

SAT and Independent Set

51	

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset I of V of size ≥ k
such that no edge in E has both end points in I.

Example: Independent Set of size ≥ 2.

In NP? Exercise

52	

Another NP problem:
Independent Set

53	

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

54	

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

55	

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

56	

k=3

3SAT ≤p IndpSet

what indp sets?

how large?
 how many?

57	

k=3

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p IndpSet

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)

58	

f =

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

IndpSet Instance:!
–  k = q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }!

3SAT ≤p IndpSet

59	

k=3

3SAT ≤p IndpSet

Correctness of “3SAT ≤p IndpSet”

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, ¬x). Output graph G plus integer k = number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-IndpSet; does not try to find satisfying assignment or set.
Correctness:
 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward.
 • Show c in 3-SAT iff f(c)=(G,k) in IndpSet:
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add
corresponding node of each triangle to set. Show it is an IndpSet: 1 per triangle
never conflicts w/ another in same triangle; only true literals (but perhaps not all
true literals) picked, so not both ends of any (x, ¬x) edge.
(⇐) Given a k-Independent Set in G, selected labels define a valid (perhaps
partial) truth assignment since no (x, ¬x) pair picked. It satisfies c since there is
one selected node in each clause triangle (else some other clause triangle has > 1
selected node, hence not an independent set.)

60	

61	

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p IndpSet”

Suppose we had a fast algorithm
for IndpSet, then we could
get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Independent
Set instance y = f(w) as above, run the fast
IS alg on y; say “YES, w is satisfiable” iff IS alg says “YES, y
has a Independent Set of the given size”

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
Independent Set either.

“3SAT ≤p IndpSet” Retrospective	

Previous slides: two suppositions	

Somewhat clumsy to have to state things that way.	

Alternative: abstract out the key elements, give it a name
(“polynomial time mapping reduction”), then properties like
the above always hold. 	

62	

NP-completeness

63	

64	

NP-Completeness

Definition: Problem B is NP-hard if
every problem in NP is polynomially
reducible to B.

Definition: Problem B is NP-complete
if:

(1) B belongs to NP, and
(2) B is NP-hard.

NP!

P!

Exp!

NP-Hard

NP-Complete

NP-completeness (cont.)	

Thousands of important problems have been shown
to be NP-complete.	

	

The general belief is that there is no efficient
algorithm for any NP-complete problem, but no
proof of that belief is known. 	

	

Examples: SAT, clique, vertex cover, IndpSet, Ham
tour, TSP, bin packing… Basically, everything we’ve
seen that’s in NP but not known to be in P	

65	

66	

Proving a problem is NP-complete	

Technically, for condition (2) we have to show that
every problem in NP is reducible to B. ���
(Sounds like a lot of work!)	

For the very first NP-complete problem (SAT) this
had to be proved directly. 	

However, once we have one NP-complete problem,
then we don’t have to do this every time.	

Why? Transitivity.	

67	

Alt way to prove NP-completeness

Lemma: Problem B is NP-complete if:
(1) B belongs to NP, and
(2’) A is polynomial-time reducible to B, for some problem
A that is NP-complete.

That is, to show NP-completeness of a new
problem B in NP, it suffices to show that SAT or
any other NP-complete problem is polynomial-time
reducible to B.

68	

Ex: IndpSet is NP-complete

3-SAT is NP-complete (S. Cook; see below)
3-SAT ≤p IndpSet
IndpSet is in NP
Therefore IndpSet is also NP-complete

So, poly-time algorithm for IndpSet would give poly-
time algs for everything in NP

we showed this earlier

More Reductions

SAT to Subset Sum (Knapsack)

69	

Subset-Sum, AKA Knapsack

KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C }

wi’s and C encoded in radix r ≥ 2. (Decimal used in

following example.)

Theorem: 3-SAT ≤p KNAP
Pf: given formula with p variables & q clauses, build KNAP instance with

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal”
weights, H.O. p digits mark which variable; L.O. q digits show which
clauses contain it. Two “slack” weights per clause mark that clause.
See example below.

70	

3-SAT ≤p KNAP

Variables Clauses
x y z (x ∨ y ∨ z) (¬x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)

Li
te

ra
ls

 w1 (x) 1 0 0 1 0 0
w2 (¬x) 1 0 0 0 1 1
w3 (y) 1 0 1 1 0
w4 (¬y) 1 0 0 0 1
w5 (z) 1 1 0 1
w6 (¬z) 1 0 1 0

Sl
ac

k

w7 (s11) 1 0 0
w8 (s12) 1 0 0
w9 (s21) 1 0
w10 (s22) 1 0
w11 (s31) 1
w12 (s32) 1
C 1 1 1 3 3 3

71	

Formula: (x ⋁ y ⋁ z) ∧ (¬x ⋁ y ⋁ ¬z) ∧ (¬x ⋁ ¬y ⋁ z)

Correctness

Poly time for reduction is routine; details omitted. Again note that it does
not look at satisfying assignment(s), if any, nor at subset sums, but the
problem instance it builds captures one via the other...

If formula is satisfiable, select the literal weights corresponding to the true
literals in a satisfying assignment. If that assignment satisfies k literals in a
clause, also select (3 - k) of the “slack” weights for that clause. Total = C.

Conversely, suppose KNAP instance has a solution. Columns are decoupled
since ≤ 5 one’s per column, so no “carries” in sum (recall – weights are
decimal). Since H.O. p digits of C are 1, exactly one of each pair of literal
weights included in the subset, so it defines a valid assignment. Since L.O.
q digits of C are 3, but at most 2 “slack” weights contribute to each, at
least one of the selected literal weights must be 1 in that clause, hence the
assignment satisfies the formula.

72	

More Reductions

SAT to Undirected Hamilton Path

73	

Example:

3-SAT ≤p UndirectedHamPath

(Note: this is not
the same as the
reduction given in
the book.)	

(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y) 	

x ∨ y

¬x ∨ y ¬x ∨ ¬y

s t
¬x 	
 ¬y	

x 	
 y	

74	

Ham Path Gadget
X

Many copies of this 12-node gadget, each with one or more edges
connecting each of the 4 corners to other nodes or gadgets (but no
other edges to the 8 “internal” nodes).

Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as
shown); the other (by symmetry) 0→0’

Pf: Note *: at 1st visit to any column, must next go to middle node in column, else
it will subsequently become an untraversable “dead end.”
WLOG, suppose enter at 1. By *, must then go down to 0. 2 cases:

Case a: (top left) If next move is to right, then * forces path up, left is blocked, so
right again, * forces down, etc; out at 1’.

Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’. * forces
next move to be up/down to the other of 0’/1’. Must then go left to reach the
2 middle columns, but there’s no exit from them. So case b is impossible.

1

0

1’

0’ 0’

1

0

1’

75	

3-SAT ≤p UndirectedHamPath

Time for the reduction: to be computable in poly time it is necessary (but
not sufficient) that G’s size is polynomial in n, the length of the formula.
Easy to see this is true, since G has q + 12 p + 13 m + 1 = O(n) vertices,
where q is the number of clauses, p is the number of instances of literals,
and m is the number of variables. Furthermore, the structure is simple
and regular, given the formula, so easily / quickly computable, but details
are omitted. (More detail expected in your homeworks, e.g.) Again,
reduction builds G, doesn’t solve it.

x ∨ y

¬x ∨ y ¬x ∨ ¬y

s t
¬x 	
 ¬y	

y	
x 	

76	

Correctness, I

Ignoring the clause nodes, there are 2m s-t paths along the
“main chain,” one for each of 2m assignments to m variables.
If f is satisfiable, pick a satisfying assignment, and pick a true
literal in each clause. Take the corresponding “main chain”
path; add a detour to/from ci for the true literal chosen from
clause i. Result is a Hamilton path.

…∨ xk ∨…

xk=T

xk chosen in clause ci

x ∨ y

¬x ∨ y ¬x ∨ ¬y

s t
¬x 	
 ¬y	

y	
x 	

77	

Correctness, II

Conversely, suppose G has a Ham path. Obviously, the path must
detour from the main chain to each clause node ci. If it does not return
immediately to the next gadget on main chain, then (by gadget properties
on earlier slide), that gadget cannot be traversed. Thus, the Ham path
must consistently use “top chain” or consistently “bottom chain” exits to
clause nodes from each variable gadget. If top chain, set that variable
True; else set it False. Result is a satisfying assignment, since each clause
is visited from a “true” literal.

Detour only possible
on an xk=T subpath

X

xk=T And must immediately return

x ∨ y

¬x ∨ y ¬x ∨ ¬y

s t
¬x 	
 ¬y	

y	
x 	

…∨ xk ∨…

78	

Cook’s Theorem

SAT is NP-Complete

79	

“NP-completeness”

Cool concept, but are there
any such problems?

Yes!

Cook’s theorem: SAT is NP-complete

80	

Why is SAT NP-complete?

Cook’s proof is somewhat involved. I’ll sketch it
below. But its essence is not so hard to grasp:

81	

Encode “solution” using Boolean variables. SAT mimics “is there a solution”
via “is there an assignment”. The “verifier” runs on a digital computer, and
digital computers just do Boolean logic. “SAT” can mimic that, too, hence
can verify that the assignment actually encodes a solution.	

Generic “NP” problems: expo. search–	

is there a poly size “solution,” verifiable
by computer in poly time	

“SAT”: is there a poly size
assignment (the hint) satisfying
the formula (the verifier)

Examples	

Again, Cook’s theorem does this for generic NP problems,
but you can get the flavor from a few specific examples	

82	

3-Coloring ≤p SAT

Given G = (V, E)
∀ i in V, variables ri, gi, bi encode color of i

∧i ∈ V [(ri ∨ gi ∨ bi) ∧

 (¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧

∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)]

83	

adj nodes ⇔ diff colors	

no node gets 2 	

every node gets a color	

hi
nt

ve

ri
fie

r

Equivalently:
(¬(ri ∧ gi)) ∧ (¬(gi ∧ bi)) ∧ (¬(bi ∧ ri)) ∧
∧(i,j) ∈ E [(ri ⇒ ¬rj) ∧ (gi ⇒ ¬gj) ∧ (bi ⇒ ¬bj)]

Independent Set ≤p SAT

Given G = (V, E) and k
∀ i in V, variable xi encodes inclusion of i in IS

∧(i,j) ∈ E (¬xi ∨ ¬xj) ∧ “number of True xi is ≥ k”

84	

every edge has one end
or other not in IS ���

(no edge connects 2 in IS)	

possible in 3 CNF, but technically
messy; basically, count 1’s	

hi
nt

ve

ri
fie

r

Hamilton Circuit ≤p SAT

Given G = (V, E) [encoded, e.g.: eij =1 ⇔ edge (i,j)]
∀ i,j in V, variables xij, encode “j follows i in the tour”

∧(i,j) (xij ⇒ eij) ∧ “it’s a permutation” ∧ “cycle length = n”

the path follows
actual edges	

every row/column has
exactly 1 one bit	

Xn = I, no smaller
power k has Xkii=1	

hi
nt

ve

ri
fie

r

85	

Perfect Matching ≤p SAT

Given G = (V, E) [encoded, e.g.: eij =1 ⇔ edge (i,j)]
∀ i<j in V, variable xij, encodes “edge i,j is in matching”

(∧(i<j) (xij ⇒ eij)) ∧ (∧(i<j<k) (xij ⇒ ¬xik)) ∧ (∧i (∨j xij))

matching edges���
are actual edges	

all vertices ���
are matched	

hi
nt

ve

ri
fie

r

86	

it’s a matching: if edge
(i,j) included, then ���

(i,k) excluded	

Cook’s Theorem

Every problem in NP is reducible to SAT

Idea of proof is extension of above examples, but done in a
general way, based on the definition of NP – show how the
SAT formula can simulate whatever (polynomial time)
computation the verifier does.

Cook proved it directly, but easier to see via an intermediate
problem – Satisfiability of Circuits rather than Formulas	

87	

Boolean Circuits	

	

	

	

	

Directed acyclic graph (yes, “circuit” is a misnomer…)	

Vertices = Boolean logic gates (∧, ∨, ¬, …) + inputs!
Multiple input bits (x1, x2, …)	

Single output bit (w)	

Gate values as expected (e.g., propagate vals by depth to xi’s)	

	

∧! ¬! ∨!
x1!

x2!

w!

88	

Boolean Circuits and Complexity	

Two Problems:
 Circuit Value: given a circuit and an assignment of
values to its inputs, is its output = 1?
 Circuit SAT: given a circuit, is there an assignment of values
to its inputs such that output =1?

Complexity:
 Circuit Value Problem is in P
 Circuit SAT Problem is in NP

Given implementation of computers via Boolean circuits, it
may be unsurprising that they are complete in P/NP, resp.

89	

Sk
et

ch
ed

 b
el

ow

90	

Detailed Logic Diagram,
Intelorola Pentathlon® 66000

Registers/Latches/Memory	

Combinational Logic, ���
Large Rat’s Nest of	

Really, Really, ���
Fast Clock	

91	

P Is Reducible To The
Circuit Value Problem

Registers/Latches/Memory	

 Combinational Logic, ���
Large Rat’s Nest of	

Really,
Really, ���

Fast Clock	

Combinational Logic	

Combinational Logic	

Combinational Logic	

Accept?	

T
	

T	

… Input …	
0 1 0 0 1 1

…Input…	
0 1 0 1 ??..Hint..??

92	

NP Is Reducible To The
Circuit Satisfiability Problem

Registers/Latches/Memory	

 Combinational Logic, ���
Large Rat’s Nest of	

Really,
Really, ���

Fast Clock	

Combinational Logic	

Combinational Logic	

Combinational Logic	

Accept?	

T
	

T	

The Verifier
Algorithm

Correctness of NP ≤p CircuitSAT

Fix an arbitrary NP-problem, a verifier alg V(x,h) for it, and a
bound nk on hint length/run time of V, show:

1) In poly time, given x, can output a circuit C as above,
2) ∃ h s.t. V(x,h)=“yes” ⇒ C is satisfiable (namely by h), and
3) C is satisfiable (say, by h) ⇒ ∃ h s.t. V(x,h)=“yes”

1)  is perhaps very tedious, but mechanical–you are

“compiling” the verifier’s code into hardware (just enough
hardware to handle inputs of length |x|)

2) & 3) exploit the fact that C simulates V, with C’s “hint bit”
inputs exactly corresponding to V’s input h.

93	

(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3	

	

Replace with 3-CNF Equivalent:	

	

	

	

	

	

	

∧! ¬! ∨!
x1!

x2! w1! w2! w3!

Circuit-SAT ���
≤p 3-SAT	

x1	
 x2	
 w1	
 x1∧x2	
 ¬(w1⇔(x1∧x2))	

0	
 0	
 0	
 0	
 0	

0	
 0	
 1	
 0	
 1	
 ← ¬x1 ∧ ¬x2 ∧ w1	

0	
 1	
 0	
 0	
 0	

0	
 1	
 1	
 0	
 1	
 ← ¬x1 ∧ x2 ∧ w1	

1	
 0	
 0	
 0	
 0	

1	
 0	
 1	
 0	
 1	
 ← x1 ∧ ¬x2 ∧ w1	

1	
 1	
 0	
 1	
 1	
 ← x1 ∧ x2 ∧ ¬w1	

1	
 1	
 1	
 1	
 0	

¬clause 	

↓���

 Truth Table	

↓	

 DNF 	

↓	

 DeMorgan	

↓	

CNF	

∧! ¬! ∨!f() = (x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨¬x2∨w1)…	

Q. Why build truth table clause-by-clause vs whole formula?
94	

A: So n*23 vs 2n rows

95	

Correctness of “Circuit-SAT ≤p 3-SAT”

Summary of reduction function f: Given circuit, add variable for every
gate’s value, build clause for each gate, satisfiable iff gate value variable is
appropriate logical function of its input variables, convert each to CNF
via standard truth-table construction. Output conjunction of all, plus
output variable. Note: as usual, does not know whether circuit or formula are
satisfiable or not; does not try to find satisfying assignment.
Correctness:
Show f is poly time computable: A key point is that formula size is linear
in circuit size; mapping basically straightforward; details omitted.
Show c in Circuit-SAT iff f(c) in SAT:
(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by
evaluating the circuit on xi’s gate by gate. Show this satisfies f(c).
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s satisfy c
(with gate values given by wi’s).
Thus, 3-SAT is NP-complete.

Coping with NP-hardness

96	

97	

Coping with NP-Completeness	

Is your real problem a special subcase?	

E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto 3- vs 2-
coloring	

E.g. only need planar-/interval-/degree 3 graphs, trees,…?	

Guaranteed approximation good enough?	

E.g. Euclidean TSP within 1.5 * Opt in poly time	

Fast enough in practice (esp. if n is small), 	

E.g. clever exhaustive search like dynamic programming,
backtrack, branch & bound, pruning	

Heuristics – usually a good approx and/or fast	

98	

5

3

4 6

4 7
2

5

8

 Example:	

	
 b = 34	

NP-complete problem: TSP	

Input: An undirected graph
G=(V,E) with integer edge
weights, and an integer b.	

	

Output: YES iff there is a
simple cycle in G passing
through all vertices (once),
with total cost ≤ b.	

Recall NN Heuristic–go to nearest unvisited vertex	

	

	

	

Fact: NN tour can be about (log n) x opt, i.e. ���
���
���
���
	

(above example is not that bad)	

99	

€

limn→∞

NN
OPT

→∞

TSP - Nearest Neighbor Heuristic	

A TSP tour visits all vertices, so contains a spanning tree, so
cost of min spanning tree < TSP cost.	

Find MST	

Find “DFS” Tour	

Shortcut	

TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP	

5

4

2
5

6

4

7

8

3

2x Approximation to EuclideanTSP	

100	

≤5+2+3+5	

≤4+3	

1.5x Approximation to EuclideanTSP	

Find MST (solid edges)	

Connect odd-degree tree vertices (dotted)	

Find min cost matching among them (thick)	

Find Euler Tour (thin)	

Shortcut (dashed)	

Shortcut ≤ ET ≤ MST + TSP/2 < 1.5* TSP	

	

101	

Cost of matching ≤ TSP/2
(next slide)	

5

3

4

2
5

 Matching ≤ TSP/2	

Oval = TSP	

Big dots = odd tree nodes ���
(Exercise: show every graph has an ���
even number of odd degree vertices) 	

Blue, Green = 2 matchings	

Blue + Green ≤ TSP (triangle inequality)	

So min matching ≤ TSP/2	

102	

P / NP Summary

103	

P

Many important problems are in P: solvable in deterministic
polynomial time

 Details are the fodder of algorithms courses. We’ve seen a few
examples here, plus many other examples in other courses

Few problems not in P are routinely solved;
 For those that are, practice is usually restricted to small instances, or
we’re forced to settle for approximate, suboptimal, or heuristic
“solutions”

A major goal of complexity theory is to delineate the
boundaries of what we can feasibly solve

104	

NP

The tip-of-the-iceberg in terms of problems conjectured not
to be in P, but a very important tip, because

a) they’re very commonly encountered, probably because
b) they arise naturally from basic “search” and

“optimization” questions.

Definition: poly time verifiable; “guess and check”, “is there

a…” – also useful

105	

NP-completeness

Defn & Properties of ≤p

A is NP-hard: everything in NP reducible to A
A is NP-complete: NP-hard and in NP

 “the hardest problems in NP”
 “All alike under the skin”

Most known natural problems in NP are complete
 #1: 3CNF-SAT
 Many others: Clique, VertexCover, HamPath, Circuit-SAT,…

106	

107	

NP!

P!

Exp!
Worse…

NP-C Summary

Big-O – good
P – good
Exp – bad
Exp, but hints help? NP
NP-hard, NP-complete – bad (I bet)
To show NP-complete – reductions
NP-complete = hopeless? – no, but you
 need to lower your expectations:
 heuristics, approximations and/or small instances.

Common Errors in
NP-completeness Proofs

Backwards reductions
Bipartiteness ≤p SAT is true, but not so useful.
(XYZ ≤p SAT shows XYZ in NP, doesn’t show it’s hard.)

Sloooow Reductions
“Find a satisfying assignment, then output…”

Half Reductions
E.g., delete clause nodes in HAM reduction. It’s still true
that “satisfiable ⇒ G has a Ham path”, but path doesn’t
necessarily give a satisfying assignment.

108	

“I can’t find an efficient algorithm, but neither can all these
famous people.” [Garey & Johnson, 1979]

The Big Boss is

IN

109	

NP-completeness might save
your job someday …

110	

Beyond NP	

Many complexity classes are worse, e.g. time 22n
, 222n

, …	

Others seem to be “worse” in a different sense, e.g., not in

NP, but still exponential time. E.g., let 	

	
Lp = “assignment y satisfies formula x”, ∈ P	

Then :	

	
SAT = { x | ∃y ⟨x,y⟩∈LP }	

	
UNSAT = { x | ∀y ⟨x,y⟩∉LP }	

	
QBFk = { x | ∃y1∀y2∃y3… k yk ⟨x,y1…yk⟩∈LP }	

	
QBF∞ = { x | ∃y1∀y2∃y3… ⟨x,y1… ⟩∈LP }	

	

Q

111	

ΣP2 : { x | ∃y∀z ⟨x,y,z⟩∈LP }	

	

⋮	

ΔP0:	

P	

The “Polynomial Hierarchy”	

ΔP1: P time���
given SAT	

ΣP1 (NP): 	

{ x | ∃y ⟨x,y⟩∈LP }	

SAT, Clique, VC, HC, Knap,… 	

ΠP1
 (co-NP): 	

{ x | ∀y ⟨x,y⟩∈LP } 	

UNSAT,…	

ΠP2
 : { x | ∀y∃z ⟨x,y,z⟩∈LP }	

	

Potential Utility: It is often easy to give such a quantifier-based characterization
of a language; doing so suggests (but doesn’t prove) ���

whether it is in P, NP, etc. and suggests candidates for reducing to it.	
112	

Examples	

QBFk in ΣPk	

	

Given graph G, integers j & k, is there a set U of ≤ j vertices
in G such that every k-clique contains a vertex in U? 	

	

Given graph G, integers j & k, is there a set U of ≥ j vertices

in G such removal of any k edges leaves a Hamilton path
in U? 	

	

113	

Space Complexity	

DTM M has space complexity S(n) if it halts on all inputs, and
never visits more than S(n) tape cells on any input of
length n.	

NTM …on any input of length n on any computation path.	

	

DSPACE(S(n)) = { L | L acc by some DTM in space O(S(n)) }	

	

NSPACE(S(n)) = { L | L acc by some NTM in space O(S(n)) }	

	

114	

Model-independence	

As with Time complexity, model doesn’t matter much. E.g.:	

	

SPACE(n) on DTM ≈ O(n) bytes on your laptop	

	

Why? Simulate each by the other.	

115	

Space vs Time	

Time T ⊆ Space T	

	

	
Pf: not enough time to use more space	

	

Space T ⊆ Time 2cT	

	

	
Pf: if run longer, looping	

116	

Space seems more powerful	

Intuitively, space is reusable, time isn’t	

	

Ex.: SAT ∈ DSPACE(n)	

	

	
Pf: try all possible assignments, one after the other	

	

Even more: ���
QBFk = { ∃y1∀y2∃y3… k yk x | ⟨x,y1…yk⟩∈LP }∈ DSPACE(n) ���
QBF∞ = { ∃y1∀y2∃y3… x | ⟨x,y1… ⟩∈LP } ∈ DSPACE(n)	

	

Q

117	

PSPACE = Space(nO(1))	

	

NP ⊆ PSPACE	

	

	
pf: depth-first search of NTM computation tree	

118	

Games	

2 player “board” games	

E.g., checkers, chess, tic-tac-toe, nim, go, …	

A finite, discrete “game board”	

Some pieces placed and/or moved on it	

“Perfect information”: no hidden data, no randomness	

Player I/Player II alternate turns	

Defined win/lose configurations (3-in-a-row; checkmate; …)	

Winning strategy: 	

∃move by player 1 ∀moves by II ∃ a move by I ∀… I wins.	

119	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

	

 Game Tree	

∃	

	

	

	

∀	

	

	

∃	

	

∀	

x x
x

x	

o	
 x	
o	

x	

o	

x	

o	

x	
 o	

1	
 1	
 1	
0 1	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
Win/lose:
120	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 	

 Game Tree	

∃	

	

	

	

∀	

	

	

∃	

	

∀	

x
∧	
 x

∧	
 x ∧	

x	

o	
∨	

∨	

x	
o	

x	

o	
∨	
 x	

o	
∨	
 x	
 o	

∨	
 ∨	

∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	

1	
 1	
 1	
0 1	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
Win/lose:
121	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 	

 Winning Strategy	

∃	

	

	

	

∀	

	

	

∃	

	

∀	

x
∧	
 x

∧	
 x ∧	

x	

o	
∨	

∨	

x	
o	

x	

o	
∨	
 x	

o	
∨	
 x	
 o	

∨	
 ∨	

∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	

1	
 1	
 1	
0 1	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 0	
Win/lose:
122	

x
∧	
 x

∧	
 x ∧	

x	

o	
∨	

∨	

x	
o	

x	

o	
∨	
 x	

o	
∨	
 x	
 o	

∨	
 ∨	

∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	
 ∧	

1	
 1	
 1	
0 1	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 0	
 1	
 1	
 0	
 1	
 0	
 1	
 0	

123	

Complexity of 2 person, perfect
information games	

From above, IF	

	
config (incl. history, etc.) is poly size	

	
only poly many successors of one config	

	
each computable in poly time	

	
win/lose configs recognizable in poly time, and	

	
game lasts poly # moves	

THEN	

	
in PSPACE!	

Pf: depth-first search of tree, calc node values as you go.	

124	

TQBF ���
“True Quantified Boolean Formulas”	

TQBF = { ∃y1∀x1∃y2 … f | assignment x,y satisfies formula f }	

(each xi, yi may be one or many bits; doesn’t matter.)	

	

TQBF in PSPACE: think of it as a game between ∃, ∀; ∃ wins

if formula satisfied. Do DFS of game tree as in examples
above, evaluating nodes (∧,∨) as you backtrack.	

	

125	

TQBF is PSPACE-complete���
“TQBF is to PSPACE as SAT is to NP”	

TQBF = { ∃y1∀x1∃y2 …f | assignment x,y satisfies formula f }	

Theorem: TQBF is PSPACE-complete	

Pf Idea:	

	
TQBF in PSPACE: above	

	
M an arbitrary nk space TM, show L(M) ≤p TQBF: below	

yk: the nk-bit config “m” picked by ∃-player in round k���
xk: 1 bit; ∀-player chooses which half-path is challenged���
Formula f: x’s select the appropriate pair of y configs;
check that 1st moves to 2nd in one step (alá Cook’s Thm)	

126	

More Detail	

For “x selects a pair of y’s”, use the following trick:	

	
f1(s1,t1) = ∃y1∀x1 g(s1,t1,y1,x1) 	

becomes	

	
∃y1∀x1 ∃s2,t2 [(x1 → (s2 = s1 ∧ t2 = y1)) ∧ 	

	
 	
 	
 (¬x1 → (s2 = y1 ∧ t2 = t1)) ∧ f2(s2,t2)]	

Here, x1 is a single bit; others represent nk-bit configs, and “=”
means the ∧ of bitwise ↔ across all bits of a config	

The final piece of the formula becomes ∃z g(sk,tk,z), where ���
g(sk,tk,z), ~ as in Cook’s Thm, is true if config sk equals tk or moves
to tk in 1 step according to M’s nondet choice z.	

A key point: formula is poly computable (e.g., poly length)	

127	

“Geography”	

128	

“Generalized Geography”	

129	

TQBF ≤p ���
Generalized ���
Geography 	
∀	

∃/∀	

∃	

∃	
 1	

And so GGEO is
PSPACE-complete	

130	

∀	

∃/∀	

∃	

∃	

∃	

∀	

(if k even)	

∃	

∃	

131	

SPACE: Summary	

Defined on TMs (as usual) but largely model-independent	

Time T ⊆ Space T ⊆ Time 2cT	

	
Cor: NP ⊆ PSPACE	

Savitch: Nspace(S) ⊆ Dspace(S2)	

	
Cor: Pspace = NPspace (!)	

TQBF is PSPACE-complete (analog: SAT is NP-complete)	

PSPACE and games (and games have serious purposes: auctions,
allocation of shared resources, hacker vs firewall,…)	

132	

An Analogy	

NP is to PSPACE as Solitaire is to Chess	

I.e., NP probs involve finding a solution to a fixed, static puzzle

with no adversary other than the structure of the puzzle
itself	

PSPACE problems, of course, just plain use poly space. But
they often involve, or can be viewed as, games where an
interactive adversary dynamically thwarts your progress
towards a solution	

The former, tho hard, seems much easier than the later–part of
the reason for the (unproven) supposition that NP ⊊
PSPACE	

133	

