CSE 521 Algorithms

The Network Flow Problem

The Network Flow Problem

How much stuff can flow from s to t?

Soviet Rail Network, 1955

Reference: *On the history of the transportation and maximum flow problems*. Alexander Schrijver in Math Programming, 91: 3, 2002.

Net Flow: Formal Definition

Given:

A digraph G = (V,E)

Two vertices s,t in V (source & sink)

A capacity $c(u,v) \ge 0$ for each $(u,v) \in E$ (and c(u,v) = 0 for all nonedges (u,v))

Find:

A *flow function* f: $V \times V \rightarrow R \text{ s.t.}$, for all u,v:

$$-f(u,v) \le c(u,v)$$

[Capacity Constraint]

$$- f(u,v) = -f(v,u)$$

[Skew Symmetry]

$$- if u \neq s,t, f(u,V) = 0$$

[Flow Conservation]

Maximizing total flow |f| = f(s,V)

Notation:

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

Example: A Flow Function

$$f(s,u) = f(u,t) = 2$$

$$f(u,s) = f(t,u) = -2 \quad \text{(Why?)}$$

$$f(s,t) = -f(t,s) = 0 \quad \text{(In every flow function for this G. Why?)}$$

$$f(u,V) = \sum_{v \in V} f(u,v) = f(u,s) + f(u,t) = -2 + 2 = 0$$

Example: A Flow Function

Not shown: f(u,v) if ≤ 0

Note: $max flow \ge 4 since f is a flow, |f| = 4$

Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G Pick such a path, p Find c_p , the min capacity of any edge in p Subtract c_p from all capacities on p Delete edges of capacity 0

Max Flow via a Greedy Alg?

This does NOT always find a max flow:

If you pick $s \rightarrow b \rightarrow a \rightarrow t$ first,

Flow stuck at 2. But flow 3 possible.

A Brief History of Flow

#	Year	Discoverer(s)	Bound	n = # of vertices
1	1951	Dantzig	O(n ² mC)	m= # of edges
2	1955	Ford & Fulkerson	O(nmC)	C = Max capacity
3	1970	Dinitz; Edmonds & Karp	O(nm ²)	
4	1970	Dinitz	$O(n^2m)$	
5	1972	Edmonds & Karp; Dinitz	O(m ² log C)	Source: Goldberg & Rao,
6	1973	Dinitz;Gabow	O(nm log C)	FOCS '97
7	1974	Karzanov	$O(n^3)$	
8	1977	Cherkassky	O(n ² /sqrt(m))	
9	1980	Galil & Naamad	O(nm log ² n)	
10	1983	Sleator & Tarjan	O(nm log n)	
11	1986	Goldberg &Tarjan	$O(nm \log_2(n^2/m))$	
12	1987	Ahuja & Orlin	$O(nm + n^2 log C)$	
13	1987	Ahuja et al.	O(nm log(n sqrt(log C)/(m+2))	
14	1989	Cheriyan & Hagerup	$E(nm + n^2 log^2 n)$	
15	1990	Cheriyan et al.	O(n ³ /log n)	
16	1990	Alon	$O(nm + n^{8/3} log n)$	
17	1992	King et al.	$O(nm + n^{2+\epsilon})$	
18	1993	Phillips & Westbrook	$O(nm(log_{m/n} n + log^{2+\epsilon} n)$	
19	1994	King et al.	$O(nm(log_m/(n log n) n)$	
20	1997	Goldberg & Rao	$O(m^{3/2} \log(n^2/m) \log C)$; $O(n^{2/3} m \log(n^2/m) \log C)$	

12

Greed Revisited

Residual Capacity

The residual capacity (w.r.t. f) of (u,v) is $c_f(u,v) = c(u,v) - f(u,v)$

E.g.:

$$c_f(s,b) = 7;$$

$$c_f(a,x) = 1;$$

$$c_f(x,a) = 3;$$

$$c_f(x,t) = 0$$
 (a saturated edge)

Residual Networks & Augmenting Paths

The *residual network* (w.r.t. f) is the graph $G_f = (V, E_f)$, where

$$E_f = \{ (u,v) \mid c_f(u,v) > 0 \}$$

An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_f .

A Residual Network

An Augmenting Path

Lemma 1

If f admits an augmenting path p, then f is not maximal.

Proof: "obvious" -- augment along p by c_p, the min residual capacity of p's edges.

Augmenting A Flow

Augmenting A Flow

Lemma 1': Augmented Flows are Flows

If f is a flow & p an augmenting path of capacity c_p , then f' is also a valid flow, where

$$f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \\ f(u,v), & \text{otherwise} \end{cases}$$

Proof:

- a) Flow conservation easy
- b) Skew symmetry easy
- c) Capacity constraints pretty easy

Lma 1': Augmented Flows are Flows

$$f'(u,v) = \begin{cases} f(u,v) + c_p, & \text{if } (u,v) \text{ in path } p \\ f(u,v) - c_p, & \text{if } (v,u) \text{ in path } p \\ f(u,v), & \text{otherwise} \end{cases}$$

f a flow & p an aug path of cap c_p , then f' also a valid flow.

Proof (Capacity constraints):

(u,v), (v,u) not on path: no change (u,v) on path:

$$f'(u,v) = f(u,v) + c_{p}$$

$$\leq f(u,v) + c_{f}(u,v)$$

$$= f(u,v) + c(u,v) - f(u,v)$$

$$= c(u,v)$$

$$f'(v,u) = f(v,u) - c_{p}$$

$$< f(v,u)$$

$$\leq c(v,u)$$
QE

Residual Capacity:

$$0 < c_p \le c_f(u, v) = c(u, v) - f(u, v)$$

Cap Constraints:

$$-c(v,u) \le f(u,v) \le c(u,v)$$

 G_{f}

Let (u,v) be any edge in augmenting path. Note

$$c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$$

Case 1: $f(u,v) \ge 0$:

Add forward flow

Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$

Case 2: $f(u,v) \le -c_p$: $f(v,u) = -f(u,v) \ge c_p$

Cancel/redirect reverse flow

Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$

Case 3: $-c_p < f(u,v) < 0$:

???

[E.g.,
$$c_p = 8$$
, $f(u,v) = -5$]

Let (u,v) be any edge in augmenting path. Note $c_f(u,v) = c(u,v) - f(u,v) \ge c_p > 0$

Case 3: $-c_p < f(u,v) < 0$ $c_p > f(v,u) > 0$:

Both:
 cancel/redirect
 reverse flow
and
 add forward flow

Ford-Fulkerson Method

While G_f has an augmenting path, augment

Questions:

- » Does it halt?
- » Does it find a maximum flow?
- » How fast?

Cuts

A partition S,T of V is a *cut* if $s \in S$, $t \in T$.

Capacity of cut S,T is $c(S,T) = \sum c(u,v)$

Lemma 2

For any flow f and any cut S,T,

the net flow across the cut equals the total flow, i.e., |f| = f(S,T), and

the net flow across the cut cannot exceed the capacity of the cut, i.e. $f(S,T) \le c(S,T)$

Corollary:

Max flow ≤ Min cut

Lemma 2

For any flow f and any cut S,T, net flow across cut = total flow ≤ cut capacity Proof:

Track a flow unit. Starts at s, ends at t. crosses cut an odd # of times; net = 1.

Last crossing uses a forward edge totaled in C(S,T)

Max Flow / Min Cut Theorem

For any flow f, the following are equivalent

- (1) |f| = c(S,T) for some cut S,T (a min cut)
- (2) f is a maximum flow
- (3) f admits no augmenting path

Proof:

- $(1) \Rightarrow (2)$: corollary to lemma 2
- $(2) \Rightarrow (3)$: contrapositive of lemma 1

$$(3) \Longrightarrow (1)$$
 (no aug) \Longrightarrow (cut)

S = { u | ∃ an augmenting path wrt f from s to u }

$$T = V - S$$
; $s \in S$, $t \in T$

For any (u,v) in $S \times T$, \exists an augmenting path from s to u, but not to v.

∴ (u,v) has 0 residual capacity:

$$(u,v) \in E \Rightarrow \text{saturated}$$
 $f(u,v) = c(u,v)$
 $(v,u) \in E \Rightarrow \text{no flow}$ $f(u,v) = 0 = -f(v,u)$

This is true for every edge crossing the cut, i.e.

$$|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) = \sum_{u \in S, v \in T, (u,v) \in E} f(u,v) = \sum_{u \in S, v \in T, (u,v) \in E} c(u,v) = c(S,T)$$

Corollaries & Facts

If Ford-Fulkerson terminates, then it's found a max flow.

It will terminate if c(e) integer or rational (but may not if they're irrational).

However, may take exponential time, even with integer capacities:

How to Make it Faster

```
Several ways. Three important ones:

Edmonds-Karp '70; Dinitz '70

1st "strongly" poly time alg. (next) T = O(nm²)

"Scaling" [Edmonds-Karp, '72; Dinitz '72]

do largest edges first; see text, and below.

if C = max capacity, T = O(m²log C)

Preflow-Push [Goldberg, Tarjan '86]

see text T = O(n³)
```

Edmonds-Karp-Dinitz '70 Algorithm

Use a shortest augmenting path (via Breadth First Search in residual graph)

Time: O(n m²)

BFS/Shortest Path Lemmas

Distance from s is never reduced by:

- Deleting an edge proof: no new (hence no shorter) path created
- Adding an edge (u,v), provided v is nearer than u

proof: BFS is unchanged, since v visited before

(u,v) examined

a back edge

Lemma 3

Let f be a flow, G_f the residual graph, and p a shortest augmenting path. Then no vertex is closer to s in the new residual graph G_{f+p} after augmentation along p.

Proof: Augmentation only deletes edges, adds back edges

Augmentation vs BFS

Theorem 2

The Edmonds-Karp-Dinitiz Algorithm performs O(mn) flow augmentations

Proof:

{*u,v*} is critical on augmenting path *p* if it's closest to *s* having min residual capacity. Won't be critical again until farther from *s*. So each edge critical at most *n* times.

Augmentation vs BFS Level

Corollary

Edmonds-Karp-Dinitz runs in O(nm²)

Example

G₀: the flow problem

G₀: the flow problem

G₀: BFS layering + Aug Path

G₀: the flow problem

G₀: BFS layering + Aug Path

G₁: Ist Residual Graph

G_I: 1st Residual Graph

G₁: 1st Residual Graph

G₁: BFS layering + Aug Path

G₁: 1st Residual Graph

G₁: BFS layering + Aug Path

G₂: 2nd Residual Graph

G₂: 2nd Residual Graph

G₂: 2nd Residual Graph

G₂: BFS layering + Aug Path

G₂: 2nd Residual Graph

G₂: BFS layering + Aug Path

G₃: 3rd Residual Graph

G₃: 3rd Residual Graph

Edmonds-Karp-Dinitz '72

- A natural greedy idea choose max capacity augmenting path first
- Finding the max is slow; finding a large capacity augmenting path is quicker, and gives the O(m² log C) algorithm "capacity scaling" algorithm below

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- lacksquare Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
   foreach e \in E f(e) \leftarrow 0
  C ← max capacity of any edge
  \Delta \leftarrow least power of 2 \geq C
  while (\Delta \ge 1) {
     G_f(\Delta) \leftarrow \Delta-residual graph
     while (\exists augmenting path P in G_f(\Delta)) {
        f \leftarrow augment(f, c, P)
       update G_f(\Delta)
     \Delta \leftarrow \Delta / 2
  return f
```

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow. Pf.

- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths. ■

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times. Pf. Initially $C \le \Delta < 2C$. Δ decreases by a factor of 2 each iteration. \blacksquare

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$. \leftarrow proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- Lemma 2 \Rightarrow v(f*) \leq v(f) + m (2 Δ).
- Each augmentation in a Δ -phase increases v(f) by at least Δ . ■

Theorem. The scaling algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. \blacksquare

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (similar to proof of max-flow min-cut theorem)

- Let A be the set of nodes reachable from s in $G_f(\Delta)$; B = V-A
- By construction, $s \in A$, $t \in B$, so A, B is a cut
- We show that $cap(A, B) \leq v(f) + m \Delta$
- Key points: among edges crossing the cut
 - forward edges > Δ : saturated;
 - backward edges > Δ : empty

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$$

$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$$

$$\geq cap(A, B) - m\Delta$$

original network

Section 7.4: Preflow-Push

Goldberg/Goldberg-Tarjan 1986

Most (all?) prior methods based on augmenting paths

Preflow-Push is a fundamentally different idea

Read 7.4; just a sketch here!

Preflow-Push Sketch

```
Idea 1: ignore "flow conservation"; push as much
 flow as possible to neighbors of s, their neighbors,
 etc. (a "preflow")
   excess(v) = flow in(v) - flow out(v); always \ge 0
Idea 2: incrementally adjust flow to shed excess
Idea 3: nodes have height; push excess downhill (only)
   h(s) = n; h(t) = 0; initially h(all others) = 0, but may rise
    if excess(v) > 0 & downhill residual edge: push flow
    if excess(v) > 0 & no downhill residual edge: <math>h(v)++
Magically, this stops, quickly, & you have a max flow
```

→ O(n²m); O(n³) with "highest-first" rule 65

Example

graph:

initial preflow, heights, residual graph:

Flow Applications

Applications of Max Flow

Many!

Most look nothing like flow, at least superficially, but are deeply connected

Several interesting examples in 7.5-7.13

(7.8-7.11, 7.13 are optional, but interesting. Airline scheduling and image segmentation are especially recommended.)

A few more in following slides

Flow Integrality Theorem

Useful facts: If all capacities are integers

- » Some max flow has an integer value
- » Ford-Fulkerson method finds a max flow in which f(u,v) is an integer for all edges (u,v)

A valid flow, but unnecessary

7.6: Disjoint Paths

Given a digraph with designated nodes s,t, are there k edge-disjoint paths from s to t? You might try depth-first search; you might fail... You might instead try "Is max flow ≥ k?" Success! Max-flow/min-cut also implies max number of edge disjoint paths = min number of edges whose removal separates s from t. Many variants: node-disjoint, undirected, ... See 7.6

7.5: Bipartite Maximum Matching

Bipartite Graphs:

- G = (V,E)
- $V = L \cup R (L \cap R = \emptyset)$
- E⊆L×R

Matching:

 A set of edges M ⊆ E such that no two edges touch a common vertex

Problem:

 Find a matching M of maximum size

Reducing Matching to Flow

Given bipartite G, build flow network N as follows:

- Add source s, sink t
- Add edges $s \rightarrow L$
- Add edges $R \rightarrow t$
- All edge capacities 1

Theorem:

Max flow iff max matching

Reducing Matching to Flow

Theorem: Max matching size = max flow value

M → f? Easy – send flow only through M

f → M? Flow Integrality Thm, + cap constraints

Notes on Matching

- Max Flow Algorithm is probably overly general here
- But most direct matching algorithms use "augmenting path"-type ideas similar to that in max flow – See text (& homework?)
- Time mn^{1/2} possible via Edmonds-Karp

7.12 Baseball Elimination

Baseball Elimination

Team	Wins	Losses	To play	Against = g _{ij}			
i	W _i	l _i	g _i	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Which teams have a chance of finishing the season with most wins?

- » Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83.
- $w_i + g_i < w_i \Rightarrow \text{team i eliminated.}$
- » Only reason sports writers appear to be aware of.
- » Sufficient, but not necessary!

Baseball Elimination

Team	Wins	Losses	To play	Against = g _{ij}			
i	Wi	l _i	g _i	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Which teams have a chance of finishing the season with most wins?

- » Philly can win 83, but still eliminated . . .
- » If Atlanta loses a game, then some other team wins one.

Remark. Depends on *both* how many games already won and left to play, *and* on which opponents.

Baseball Elimination

Baseball elimination problem.

- » Set of teams S.
- » Distinguished team $s \in S$.
- » Team x has won w_x games already.
- Teams x and y play each other g_{xy} additional times.
- » Is there any outcome of the remaining games in which team s finishes with the most (or tied for the most) wins?

Baseball Elimination: Max Flow Formulation

Can team 3 finish with most wins?

Assume team 3 wins all remaining games \Rightarrow $w_3 + g_3$ wins. Divvy remaining games so that all teams have \leq $w_3 + g_3$ wins.

Baseball Elimination: As Max Flow

Theorem. Team 3 is eliminated iff max flow ≠ games left. Integrality ⇒ each remaining x-y game added to # wins for x or y. Capacity on (x, t) edges ensure no team wins too many games. In max flow, unsaturated source edge = unplayed game; if played, (either) winner would push ahead of team 3

Team	Wins	Losses	To play	Against =g _{ij}				
i	W _i	I_{i}	g _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Team	Wins	Losses	To play	Against =g _{ij}				
i	W _i	I_i	g _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

Which teams could finish the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}

Have already won w(R) = 278 games.

Must win at least r(R) = 27 more.

Average team in R wins at least 305/4 > 76 games.

Certificate of elimination

$$T \subseteq S$$
, $w(T) := \sum_{i \in T}^{\# \text{ wins}} w_i$, $g(T) := \sum_{\{x,y\} \subseteq T}^{\# \text{ remaining games}} g_{xy}$,

LB on avg # games won

If
$$\frac{w(T) + g(T)}{|T|} > w_z + g_z$$
 then z eliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T* that eliminates z.

Proof idea. Let T^* = teams on source side of min cut.

	W	g	NY	Balt	Tor	Bos	
NY	90	11	-	1	6	4	
Baltimore	88	6	1		1	4	4.0.4
Toronto	87	10	6	1	-	4	g* = 1+6+1 = 8
Bøston	79	12	4	4	4	-	

Fig 7.21 Min cut \Rightarrow no flow of value g*, so Boston eliminated.

Pf of theorem.

Use max flow formulation, and consider min cut (A, B).

Define T* = team nodes on source side of min cut.

Observe $x-y \in A$ iff both $x \in T^*$ and $y \in T^*$.

infinite capacity edges ensure if $x-y \in A$ then $x \in A$ and $y \in A$ if $x \in A$ and $y \in A$ but $x-y \notin T^*$, then adding x-y to A decreases capacity of cut

Pf of theorem.

Use max flow formulation, and consider min cut (A, B).

Define T* = team nodes on source side of min cut.

Observe x-y
$$\in$$
 A iff both x \in T* and y \in T*. $g(S - \{z\}) > cap(A, B)$

$$= g(S - \{z\}) - g(T^*) + \sum_{x \in T^*} (w_z + g_z - w_x)$$

$$= g(S - \{z\}) - g(T^*) - w(T^*) + |T^*|(w_z + g_z)$$

Rearranging:

$$w_z + g_z < \frac{w(T^*) + g(T^*)}{|T^*|}$$

Matching & Baseball: Key Points

Can (sometimes) take problems that seemingly have *nothing* to do with flow & reduce them to a flow problem

How? Build a clever network; map allocation of stuff in original problem (match edges; wins) to allocation of flow in network. Clever edge capacities constrain solution to mimic original problem in some way. Integrality useful.

Matching & Baseball: Key Points

Furthermore, in the baseball example, min cut can be translated into a succinct *certificate* or *proof* of some property that is much more transparent than "see, I ran max-flow and it says flow must be less than g*".

These examples suggest why max flow is so important – *it's a very general tool used in many other algorithms*.