CSE 521 Algorithms

The Network Flow Problem

The Network Flow Problem

How much stuff can flow from s to t?

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Net Flow: Formal Definition

Given:

A digraph $G=(\mathrm{V}, \mathrm{E})$
Two vertices s,t in V (source \& sink)
A capacity $\mathrm{c}(\mathrm{u}, \mathrm{v}) \geq 0$
for each $(u, v) \in E$ (and $c(u, v)=0$ for all nonedges (u,v))

Find:

A flow function $\mathrm{f}: \mathrm{V} \mathrm{x} \mathrm{V} \rightarrow \mathrm{R}$ s.t., for all u, v :

$$
-\mathrm{f}(\mathrm{u}, \mathrm{v}) \leq \mathrm{C}(\mathrm{u}, \mathrm{v}) \quad \text { [Capacity Constraint] }
$$

$-f(u, v)=-f(v, u) \quad$ [Skew Symmetry]

- if $u \neq s, t, f(u, V)=0 \quad$ [Flow Conservation]

Maximizing total flow $|\mathrm{f}|=\mathrm{f}(\mathrm{s}, \mathrm{V})$

Notation:

$$
f(X, Y)=\sum_{x \in X} \sum_{y \in Y} f(x, y)
$$

Example: A Flow Function

flow/capacity, not 0.66...

$f(s, u)=f(u, t)=2$
$f(u, s)=f(t, u)=-2($ Why? $)$
$f(s, t)=-f(t, s)=0$ (In every flow function for this G. Why?)
$f(u, V)=\sum_{v \in V} f(u, v)=f(u, s)+f(u, t)=-2+2=0$

Example: A Flow Function

Not shown: $\mathrm{f}(\mathrm{u}, \mathrm{v})$ if ≤ 0
Note: $m a x$ flow ≥ 4 since f is a flow, $|f|=4$

Max Flow via a Greedy Alg?

While there is an $s \rightarrow t$ path in G
Pick such a path, p

Max Flow via a Greedy Alg?

This does NOT always find a max flow:
If you pick $s \rightarrow b \rightarrow a \rightarrow t$ first,

Flow stuck at 2. But flow 3 possible.

A Brief History of Flow

\# Year Discoverer(s)
11951 Dantzig
21955 Ford \& Fulkerson
31970 Dinitz; Edmonds \& Karp
41970 Dinitz
51972 Edmonds \& Karp; Dinitz
61973 Dinitz;Gabow
71974 Karzanov
81977 Cherkassky
91980 Galil \& Naamad
101983 Sleator \& Tarjan
111986 Goldberg \&Tarjan
121987 Ahuja \& Orlin
131987 Ahuja et al.
141989 Cheriyan \& Hagerup
151990 Cheriyan et al.
161990 Alon
171992 King et al.
181993 Phillips \& Westbrook
191994 King et al.
201997 Goldberg \& Rao

Bound
$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{mC}\right)$
$\mathrm{O}(\mathrm{nmC})$
$\mathrm{O}\left(\mathrm{nm}^{2}\right)$
$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$
$O\left(m^{2} \log C\right)$
$\mathrm{O}(\mathrm{nm} \log \mathrm{C})$
$\mathrm{O}\left(\mathrm{n}^{3}\right)$
$\mathrm{O}\left(\mathrm{n}^{2} \mathrm{sqrt}(\mathrm{m})\right)$
$\mathrm{O}\left(\mathrm{nm} \log ^{2} \mathrm{n}\right)$
$O(n m \log n)$
$O\left(n m \log \left(n^{2} / m\right)\right)$
$\mathrm{O}\left(\mathrm{nm}+\mathrm{n}^{2} \log \mathrm{C}\right)$
$\mathrm{O}\left(\mathrm{nm} \log _{2} \mathrm{n} \operatorname{sqrt(\operatorname {log}C)/(m+2))}\right.$
$E\left(n m+n^{2} \log ^{2} n\right)$
$O\left(n^{3} / \log n\right)$
$O\left(n m+n^{8 / 3} \log n\right)$
$\mathrm{O}\left(\mathrm{nm}+\mathrm{n}^{2+\varepsilon}\right)$
$O\left(n m\left(\log _{m / n} n+\log ^{2+\varepsilon} n\right)\right.$
$O\left(n m\left(\log _{m /(n \log n)} n\right)\right.$
$O\left(m^{3 / 2} \log \left(n^{2} / m\right) \log C\right) ; O\left(n^{2 / 3} m \log \left(n^{2} / m\right) \log C\right)$

```
n = # of vertices
```

$\mathrm{m}=$ \# of edges
C = Max capacity

Greed Revisited

$\sqrt{\checkmark}$

Residual Capacity

The residual capacity (w.r.t. f) of (u, v) is $c_{f}(u, v)=c(u, v)-f(u, v)$
E.g.:
$\mathrm{C}_{\mathrm{f}}(\mathrm{s}, \mathrm{b})=7$;
$c_{f}(a, x)=1$;
$c_{f}(x, a)=3 ;$

$C_{f}(x, t)=0$ (a saturated edge)

Residual Networks \& Augmenting Paths

The residual network (w.r.t. f) is the graph $\mathrm{G}_{\mathrm{f}}=\left(\mathrm{V}, \mathrm{E}_{\mathrm{f}}\right)$, where

$$
E_{f}=\left\{(u, v) \mid c_{f}(u, v)>0\right\}
$$

An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_{f}.

A Residual Network

An Augmenting Path

Lemma 1

If f admits an augmenting path p, then f is not maximal.

Proof: "obvious" -- augment along p by c_{p}, the min residual capacity of p's edges.

Augmenting A Flow

Augmenting A Flow

Lemma 1':
 Augmented Flows are Flows

If f is a flow $\& p$ an augmenting path of capacity c_{p}, then f^{\prime} is also a valid flow, where

$$
f^{\prime}(u, v)= \begin{cases}f(u, v)+c_{p}, & \text { if }(u, v) \text { in path } p \\ f(u, v)-c_{p}, & \text { if }(v, u) \text { in path } p \\ f(u, v), & \text { otherwise }\end{cases}
$$

Proof:
a) Flow conservation - easy
b) Skew symmetry - easy
c) Capacity constraints - pretty easy

Lma 1': Augmented Flows are Flows

$f^{\prime}(u, v)= \begin{cases}f(u, v)+c_{p}, & \text { if }(u, v) \text { in path } p \\ f(u, v)-c_{p}, & \text { if }(v, u) \text { in path } p \\ f(u, v), & \text { otherwise }\end{cases}$
f a flow $\& p$ an aug path of cap c_{p}, then f^{\prime} also a valid flow.
Proof (Capacity constraints):
(u,v), (v,u) not on path: no change (u, v) on path:

$$
\begin{aligned}
f^{\prime}(u, v) & =f(u, v)+c_{p} \\
& \leq f(u, v)+c_{f}(u, v) \\
& =f(u, v)+c(u, v)-f(u, v) \\
& =c(u, v) \\
f^{\prime}(v, u) & =f(v, u)-c_{p} \\
& <f(v, u) \\
& \leq c(v, u)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Residual Capacity: } \\
& \begin{array}{l}
0<c_{p} \leq c_{f}(u, v)= \\
c(u, v)-f(u, v)
\end{array}
\end{aligned}
$$

Cap Constraints:

$$
-c(v, u) \leq f(u, v) \leq c(u, v)
$$

Lemma 1' Example - Case 1

G_{f}

Let (u, v) be any edge in augmenting path. Note

$c_{f}(u, v)=c(u, v)-f(u, v) \geq c_{p}>0$
Case 1: $f(u, v) \geq 0$:

Add forward flow

Lemma 1' Example - Case 2

G_{f}

Let (u, v) be any edge in augmenting path. Note
$c_{f}(u, v)=c(u, v)-f(u, v) \geq c_{p}>0$
Case 2: $f(u, v) \leq-c_{p}$:
$f(v, u)=-f(u, v) \geq c_{p}$

Cancel/redirect reverse flow

Lemma 1' Example - Case 3

Let (u, v) be any edge in augmenting path. Note
$c_{f}(u, v)=c(u, v)-f(u, v) \geq c_{p}>0$
Case 3: $-\mathrm{c}_{\mathrm{p}}<\mathrm{f}(\mathrm{u}, \mathrm{v})<0$:

???
$\left[\right.$ E.g., $\left.c_{p}=8, f(u, v)=-5\right] \quad G_{\text {after }}$ (u).... (v)

Lemma 1' Example - Case 3

$c_{f}(u, v)=c(u, v)-f(u, v) \geq c_{p}>0$
Case 3: $-\mathrm{c}_{\mathrm{p}}<\mathrm{f}(\mathrm{u}, \mathrm{v})<0$

$$
c_{p}>f(v, u)>0:
$$

Both:
cancel/redirect reverse flow
and
add forward flow

Ford-Fulkerson Method

While G_{f} has an augmenting path, augment

Questions:
» Does it halt?
» Does it find a maximum flow?
»How fast?

Cuts

A partition S, T of V is a cut if $s \in S, t \in T$. Capacity of cut S, T is $c(S, T)=\sum_{u \in S} c(u, v)$

Lemma 2

For any flow f and any cut S,T, the net flow across the cut equals the total flow, i.e., $|f|=f(S, T)$, and the net flow across the cut cannot exceed the capacity of the cut, i.e. $f(S, T) \leq c(S, T)$
Corollary:
Max flow \leq Min cut

Lemma 2

For any flow f and any cut S, T, net flow across cut $=$ total flow \leq cut capacity
Proof:
Track a flow unit. Starts at s , ends at t . crosses cut an odd \# of times; net = 1 . Last crossing uses a forward edge totaled in $\mathrm{C}(\mathrm{S}, \mathrm{T})$

Max Flow / Min Cut Theorem

For any flow f , the following are equivalent
(1) $\mid \mathrm{ff}=\mathrm{c}(\mathrm{S}, \mathrm{T})$ for some cut S,T (a min cut)
(2) f is a maximum flow
(3) f admits no augmenting path

Proof:
(1) \Rightarrow (2): corollary to lemma 2
$(2) \Rightarrow(3)$: contrapositive of lemma 1

$(3) \Rightarrow(1)$
 (no aug) \Rightarrow (cut)

$S=\{u \mid \exists$ an augmenting path wrt f from s to $u\}$ $T=V-S ; s \in S, t \in T$
For any (u, v) in $S \times T, \exists$ an augmenting path from s to u, but not to v.
$\therefore(u, v)$ has 0 residual capacity:

$$
\begin{array}{ll}
(u, v) \in E \Rightarrow \text { saturated } & f(u, v)=c(u, v) \\
(v, u) \in E \Rightarrow \text { no flow } & f(u, v)=0=-f(v, u)
\end{array}
$$

This is true for every edge crossing the cut, i.e.

$$
\begin{aligned}
& |f|=f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)= \\
& \quad \sum_{u \in S, v \in T,(u, v) E} f(u, v)=\sum_{u \in S, v \in T,(u, v) \in E} c(u, v)=c(S, T)
\end{aligned}
$$

Corollaries \& Facts

If Ford-Fulkerson terminates, then it's found a max flow.
It will terminate if $c(e)$ integer or rational (but may not if they're irrational).
However, may take exponential time, even with integer capacities:

How to Make it Faster

Several ways. Three important ones:

Edmonds-Karp ‘70; Dinitz ‘70
$1^{\text {st }}$ "strongly" poly time alg. (next) $\quad \mathrm{T}=\mathrm{O}\left(\mathrm{nm}^{2}\right)$
"Scaling" [Edmonds-Karp, '72; Dinitz '72] do largest edges first; see text, and below. if $\mathrm{C}=$ max capacity, $\quad \mathrm{T}=\mathrm{O}\left(\mathrm{m}^{2} \log \mathrm{C}\right)$
Preflow-Push [Goldberg, Tarjan '86]
see text

$$
\mathrm{T}=\mathrm{O}\left(\mathrm{n}^{3}\right)
$$

Edmonds-Karp-Dinitz '70 Algorithm

Use a shortest augmenting path (via Breadth First Search in residual graph)

Time: $\mathrm{O}\left(\mathrm{n} \mathrm{m}^{2}\right)$

BFS/Shortest Path Lemmas

Distance from s is never reduced by:

- Deleting an edge proof: no new (hence no shorter) path created
- Adding an edge (u, v), provided v is nearer than u proof: BFS is unchanged, since v visited before (u, v) examined

Lemma 3

Let f be a flow, G_{f} the residual graph, and p a shortest augmenting path. Then no vertex is closer to s in the new residual graph G_{f+p} after augmentation along p.

Proof: Augmentation only deletes edges, adds back edges

Augmentation vs BFS

G_{f}

G_{f},

Theorem 2

The Edmonds-Karp-Dinitiz Algorithm performs $\mathrm{O}(\mathrm{mn})$ flow augmentations

Proof:
$\{u, v\}$ is critical on augmenting path p if it's closest to s having min residual capacity.
Won't be critical again until farther from s.
So each edge critical at most n times.

Augmentation vs BFS Level

Corollary

Edmonds-Karp-Dinitz runs in $\mathrm{O}\left(\mathrm{nm}^{2}\right)$

Example

G_{0} : the flow problem

G_{0} : the flow problem
G_{0} : BFS layering + Aug Path

G_{0} : the flow problem
G_{0} : BFS layering + Aug Path
G_{1} : Ist Residual Graph

G_{1} : Ist Residual Graph

G_{1} : Ist Residual Graph
G_{I} : BFS layering + Aug Path

G_{1} : Ist Residual Graph
G_{1} : BFS layering + Aug Path
G_{2} : 2nd Residual Graph

G_{2} : 2nd Residual Graph

$\mathrm{G}_{2}:$ 2nd Residual Graph
G_{2} : BFS layering + Aug Path

G_{2} : BFS layering + Aug Path

G_{3} : 3rd Residual Graph

G_{3} : 3rd Residual Graph

G_{3} : 3rd Residual Graph

Edmonds-Karp-Dinitz'72

- A natural greedy idea - choose max capacity augmenting path first
- Finding the max is slow; finding a large capacity augmenting path is quicker, and gives the $\mathrm{O}\left(\mathrm{m}^{2} \log \mathrm{C}\right)$ algorithm "capacity scaling" algorithm below

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_{f}(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e GE f(e) \leftarrow 0
    C }\leftarrow\mathrm{ max capacity of any edge
    \Delta}\leftarrow least power of 2 \geq 
    while (\Delta \geq 1) {
        Gf(\Delta) \leftarrow\Delta-residual graph
        while ( }\exists\mathrm{ augmenting path P in G}\mp@subsup{G}{f}{\prime}(\Delta)) 
        f}\leftarrow\operatorname{augment(f, c, P)
        update Gf(\Delta)
        }
    \Delta}\leftarrow\Delta/
    }
    return f
}
```


Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.
Correctness. If the algorithm terminates, then f is a max flow.
Pf.

- By integrality invariant, when $\Delta=1 \Rightarrow G_{f}(\Delta)=G_{f}$.
- Upon termination of $\Delta=1$ phase, there are no augmenting paths. -

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1+\left\lceil\log _{2} C\right\rceil$ times.
Pf. Initially $C \leq \Delta<2 C . \Delta$ decreases by a factor of 2 each iteration. -

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most $v(f)+m \Delta$. \leftarrow proof on next slide

Lemma 3. There are at most 2 m augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- Lemma $2 \Rightarrow v\left(f^{*}\right) \leq v(f)+m(2 \Delta)$.
- Each augmentation in a Δ-phase increases $v(f)$ by at least Δ. .

Theorem. The scaling algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O\left(m^{2} \log C\right)$ time. -

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f)+m \Delta$.
Pf. (similar to proof of max-flow min-cut theorem)

- Let A be the set of nodes reachable from s in $G_{f}(\Delta) ; B=V-A$
- By construction, $s \in A, t \in B$, so A, B is a cut
- We show that $\operatorname{cap}(A, B) \leq v(f)+m \Delta$
- Key points: among edges crossing the cut
- forward edges > Δ : saturated;
- backward edges > Δ : empty

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to A }} f(e) \\
& \geq \sum_{e \text { out of } A}(c(e)-\Delta)-\sum_{e \text { in to } A} \Delta \\
& =\sum_{e \text { out of } A} c(e)-\sum_{e \text { out of } A} \Delta-\sum_{e \text { in to } A} \Delta \\
& \geq \operatorname{cap}(A, B)-m \Delta
\end{aligned}
$$

Section 7.4: Preflow-Push

Goldberg/Goldberg-Tarjan 1986

Most (all?) prior methods based on augmenting paths
Preflow-Push is a fundamentally different idea

Read 7.4; just a sketch here!

Preflow-Push Sketch

Idea 1: ignore "flow conservation"; push as much flow as possible to neighbors of s , their neighbors, etc. (a "preflow")
excess(v) = flow_in(v) - flow_out(v); always ≥ 0
Idea 2: incrementally adjust flow to shed excess Idea 3: nodes have height; push excess downhill (only) $h(s)=n ; h(t)=0$; initially $h($ all others $)=0$, but may rise if excess $(\mathrm{v})>0$ \& downhill residual edge: push flow if excess(v) >0 \& no downhill residual edge: $h(v)++$
Magically, this stops, quickly, \& you have a max flow
$\longrightarrow \mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$; $\mathrm{O}\left(\mathrm{n}^{3}\right)$ with "highest-first" rule

Example

graph:

initial preflow, heights, residual graph:

Flow Applications

Applications of Max Flow

Many!
Most look nothing like flow, at least superficially, but are deeply connected
Several interesting examples in 7.5-7.13
(7.8-7.11, 7.13 are optional, but interesting.

Airline scheduling and image segmentation are especially recommended.)
A few more in following slides

Flow Integrality Theorem

Useful facts: If all capacities are integers

» Some max flow has an integer value
» Ford-Fulkerson method finds a max flow in which $f(u, v)$ is an integer for all edges (u, v)

A valid flow, but unnecessary

7.6: Disjoint Paths

Given a digraph with designated nodes s,t, are there k edge-disjoint paths from s to t?
You might try depth-first search; you might fail...
You might instead try "Is max flow $\geq k$?" Success!
Max-flow/min-cut also implies max number of edge disjoint paths = min number of edges whose removal separates s from t .
Many variants: node-disjoint, undirected, ...
See 7.6

7.5: Bipartite Maximum Matching

Bipartite Graphs:

- $G=(V, E)$
- $V=L \cup R(L \cap R=\varnothing)$
- $E \subseteq L \times R$

Matching:

- A set of edges $M \subseteq E$ such that no two edges touch a common vertex

Problem:

- Find a matching M of maximum size

Reducing Matching to Flow

Given bipartite G, build flow network N as follows:

- Add source s, sink t
- Add edges $s \rightarrow$ L
- Add edges $R \rightarrow$ t
- All edge capacities 1

Theorem:
 Max flow iff max matching

Reducing Matching to Flow

Theorem: Max matching size = max flow value

$\mathrm{M} \rightarrow \mathrm{f}$? Easy - send flow only through M
$\mathrm{f} \rightarrow \mathrm{M}$? Flow Integrality Thm, + cap constraints

Notes on Matching

- Max Flow Algorithm is probably overly general here
- But most direct matching algorithms use "augmenting path"-type ideas similar to that in max flow - See text (\& homework?)
- Time mn ${ }^{1 / 2}$ possible via Edmonds-Karp

7.12 Baseball Elimination

Baseball Elimination

Team	Wins	Losses	To play	Against $=\mathrm{g}_{\mathrm{ij}}$			
	w_{i}	I_{i}	g_{i}	AtI	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Which teams have a chance of finishing the season with most wins?
» Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83.
» $\mathrm{w}_{\mathrm{i}}+\mathrm{g}_{\mathrm{i}}<\mathrm{w}_{\mathrm{j}} \Rightarrow$ team i eliminated.
» Only reason sports writers appear to be aware of.
» Sufficient, but not necessary!

Baseball Elimination

Team	Wins	Losses	To play	Against g_{ij}			
	w_{i}	I_{i}	g_{i}	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

Which teams have a chance of finishing the season with most wins?
» Philly can win 83, but still eliminated . . .
» If Atlanta loses a game, then some other team wins one.
Remark. Depends on both how many games already won and left to play, and on which opponents.

Baseball Elimination

Baseball elimination problem.

» Set of teams S .
» Distinguished team $s \in S$.
» Team x has won w_{x} games already.
» Teams x and y play each other $g_{x y}$ additional times.
» Is there any outcome of the remaining games in which team s finishes with the most (or tied for the most) wins?

Baseball Elimination: Max Flow Formulation

Can team 3 finish with most wins?

Assume team 3 wins all remaining games $\Rightarrow w_{3}+g_{3}$ wins.
Divvy remaining games so that all teams have $\leq w_{3}+g_{3}$ wins.

Baseball Elimination: As Max Flow

Theorem. Team 3 is eliminated iff max flow \neq games left. Integrality \Rightarrow each remaining $x-y$ game added to \# wins for x or y.
Capacity on (x, t) edges ensure no team wins too many games. In max flow, unsaturated source edge = unplayed game; if played, (either) winner would push ahead of team 3

Baseball Elimination: Explanation for Sports Writers

Team	Wins	Losses	To play	Against $=\mathrm{g}_{\mathrm{ij}}$				
	w_{i}	I_{i}	g_{i}	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996
Which teams have a chance of finishing the season with most wins?

Detroit could finish season with $49+27=76$ wins.

Baseball Elimination: Explanation for Sports Writers

Team i	Wins w_{i}	Losses I_{i}	To play g_{i}	Against $=\mathrm{g}_{\mathrm{ij}}$				
				NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996
Which teams could finish the season with most wins?
Detroit could finish season with $49+27=76$ wins.
Certificate of elimination. $\mathrm{R}=\{\mathrm{NY}, \mathrm{Bal}, \mathrm{Bos}$, Tor $\}$
Have already won $w(R)=278$ games.
Must win at least $r(R)=27$ more.
Average team in R wins at least 305/4>76 games.

Baseball Elimination: Explanation for Sports Writers

| Certificate of
 elimination |
| :--- |$\subseteq S, w(T):=\overbrace{i \in T}^{\# \text { wins }} w_{i}, g(T):=\overbrace{\sum_{\{x, y\} \subseteq T} g_{x y}}^{\text {\# remaining games }}$,

If $\overbrace{\frac{w(T)+g(T)}{|T|}}^{\text {LB on avg \# games won }}>w_{z}+g_{z}$ then z eliminated (by subset T).
Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a subset T^{*} that eliminates z.

Proof idea. Let $T^{*}=$ teams on source side of min cut.

	w	l	g	NY	Balt	Tor	Bos
NY	90		11	-	1	6	4
Baltimore	88		6	1	-	1	4
Toronto	87		10	6	1	-	4
Bøston	79		12	4	4	4	-

$$
\begin{gathered}
(90+87+6) / 2>91 \\
\text { so the set } T=\{N Y, \text { Tor }\} \\
\text { proves Boston is eliminated. }
\end{gathered}
$$

Fig 7.21 Min cut \Rightarrow no flow of value g^{*}, so Boston eliminated.

Baseball Elimination:
 Explanation for Sports Writers

Pf of theorem.

Use max flow formulation, and consider min cut (A, B).
Define $T^{*}=$ team nodes on source side of min cut.
Observe $x-y \in A$ iff both $x \in T^{*}$ and $y \in T^{*}$.
infinite capacity edges ensure if $x-y \in A$ then $x \in A$ and $y \in A$
if $x \in A$ and $y \in A$ but $x-y \notin T^{*}$, then adding $x-y$ to A decreases capacity of cut

Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
Use max flow formulation, and consider min cut (A, B).
Define $T^{*}=$ team nodes on source side of min cut. Observe $\mathrm{x}-\mathrm{y} \in \mathrm{A}$ iff both $\mathrm{x} \in \mathrm{T}^{*}$ and $\mathrm{y} \in \mathrm{T}^{*}$. $g(S-\{z\})>\operatorname{cap}(A, B)$

$$
\begin{aligned}
& =\overbrace{g(S-\{z\})-g\left(T^{*}\right)}^{\text {capacity of game edges leaving A }}+\overbrace{\sum_{x \in T^{*}}\left(w_{z}+g_{z}-w_{x}\right)}^{\text {capacity of team edges leaving A }} \\
& =g(S-\{z\})-g\left(T^{*}\right)-w\left(T^{*}\right)+\left|T^{*}\right|\left(w_{z}+g_{z}\right)
\end{aligned}
$$

Rearranging:

$$
w_{z}+g_{z}<\frac{w\left(T^{*}\right)+g\left(T^{*}\right)}{\left|T^{*}\right|}
$$

Matching \& Baseball: Key Points

Can (sometimes) take problems that seemingly have nothing to do with flow \& reduce them to a flow problem
How? Build a clever network; map allocation of stuff in original problem (match edges; wins) to allocation of flow in network. Clever edge capacities constrain solution to mimic original problem in some way. Integrality useful.

Matching \& Baseball: Key Points

Furthermore, in the baseball example, min cut can be translated into a succinct certificate or proof of some property that is much more transparent than "see, I ran max-flow and it says flow must be less than $\mathrm{g}^{* \prime}$.

These examples suggest why max flow is so important - it's a very general tool used in many other algorithms.

