
1	

CSE 521���
Algorithms	

Huffman and Arithmetic Codes: ���
Optimal Data Compression Methods	

2	

Compression Example	

100k file, 6 letter alphabet:	

	

File Size:	

ASCII, 8 bits/char: 800kbits	

23 > 6; 3 bits/char: 300kbits	

	

	

Why?	

Storage, transmission vs 5 Ghz cpu	

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

3	

Compression Example	

100k file, 6 letter alphabet:	

	

File Size:	

ASCII, 8 bits/char: 800kbits	

23 > 6; 3 bits/char: 300kbits	

better: ���
2.52 bits/char 74%*2 +26%*4: 252kbits	

Optimal?	

	

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

E.g.:	

a 	

00	

b 	

01	

d 	

10	

c 	

1100	

e 	

1101	

f 	

1110	

Why not:	

00	

01	

10	

110	

1101	

1110	

1101110 = cf or ec?	

4	

Data Compression	

Binary character code (“code”)	

each k-bit source string maps to unique code word ���
(e.g. k=8)	

“compression” alg: concatenate code words for
successive k-bit “characters” of source	

Fixed/variable length codes	

all code words equal length?	

Prefix codes	

no code word is prefix of another (unique decoding)	

Prefix Codes = Trees	

f a b

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

1 0 1 0 0 0 0 0 1

 f a b

100!

55!a:45!

30!

f:5!

c:12!

25!

b:13! d:16!14!

e:9!

0! 1!

0! 1!

0! 1!0! 1!

0! 1!

100!

86!

a:45!

14!

e:9!b:13!

28!

c:12! d:16!

14!

f:5!

0! 1!

0! 1!

0! 1!0! 1!0! 1!
58!

0!

1 1 0 0 0 1 0 1

6	

Greedy Idea #1	

Put most frequent ���
under root, then recurse …	

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

a:45

100

 .
 . .
. .

7	

Greedy Idea #1	

Top down: Put most frequent ���
under root, then recurse	

	

Too greedy: ���
unbalanced tree���
.45*1 + .16*2 + .13*3 … = 2.34
not too bad, but imagine if all
freqs were ~1/6:
 (1+2+3+4+5+5)/6=3.33

a:45

100

d:16

55

b:13

29

.
 .
 .

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

8	

Greedy Idea #2	

Top down: Divide letters ���
into 2 groups, with ~50% ���
weight in each; recurse���
(Shannon-Fano code)	

Again, not terrible���
2*.5+3*.5 = 2.5	

But this tree ���
can easily be ���
improved! (How?)	

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

100

50

a:45

50

f:5

b:13

25

c:12 d:16

25

e:9

9	

Greedy idea #3	

Bottom up: Group ���
least frequent letters ���
near bottom	

100

f:5

14

.
 .
 .

e:9

c:12

25

b:13

 .
 .
.

a 45%
b 13%
c 12%
d 16%
e 9%
f 5%

(b)	

a:45!d:16!c:12! b:13!

f:5!

14!

e:9!
0! 1!

(a)	

a:45!d:16!c:12! b:13!f:5! e:9!

(f)	

100!

55!a:45!

30!

f:5!

c:12!

25!

b:13! d:16!14!

e:9!

0! 1!

0! 1!

0! 1!0! 1!

0! 1!
(e)	

55!a:45!

30!

f:5!

c:12!

25!

b:13! d:16!14!

e:9!

0! 1!

0! 1!0! 1!

0! 1!

(d)	

a:45!30!

f:5!

c:12!

25!

b:13! d:16!14!

e:9!

0! 1!0! 1!

0! 1!

(c)	

a:45!d:16!

c:12!

25!

b:13!
0! 1!

f:5!

14!

e:9!
0! 1!

.45*1 + .41*3 + .14*4 = 2.24 bits per char

11	

Huffman’s Algorithm (1952)	

Algorithm:	

	

insert node for each letter into priority queue by freq	

	

while queue length > 1 do	

	

 	

remove smallest 2; call them x, y	

	

 	

make new node z from them, with f(z) = f(x) + f(y)	

	

 	

insert z into queue	

Analysis: O(n) heap ops: O(n log n)	

Goal: Minimize	

Correctness: ???	

€

B(T) = freq(c)*depth(c)
c∈C∑

12	

Correctness Strategy	

Optimal solution may not be unique, so
cannot prove that greedy gives the only
possible answer.	

	

Instead, show that greedy’s solution is as
good as any.	

	

How: an exchange argument	

Claim: If we flip an inversion, cost never increases.	

Why? All other things being equal, better to give more frequent
letter the shorter code.	

 before after	

	

	

	

I.e., non-negative cost savings.	

Defn: A pair of leaves x,y is an inversion if 	

 depth(x) ≥ depth(y)	

and	

 freq(x) ≥ freq(y)	

(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) =

(d(x) - d(y)) * (f(x) - f(y)) ≥ 0

x	

y	

14	

The 2 least frequent letters might ���
as well be siblings at deepest level	

Let a be least freq, b 2nd	

Let u, v be siblings at ���
max depth, f(u) ≤ f(v) ���
(why must they exist?)	

Then (a,u) and (b,v) are ���
inversions. Swap them.	

	

Lemma 1: ���
“Greedy Choice Property”	

a	

v	

u	

b	

15	

Let (C, f) be a problem instance: C an n-letter alphabet with
letter frequencies f(c) for c in C.	

For any x, y in C, z not in C, let C ' be the (n-1) letter
alphabet C - {x,y} ∪ {z} and for all c in C ' define	

	

	

Let T ' be an optimal tree for (C ',f ').	

Then 	

	

	

	

is optimal for (C,f) among all trees having x,y as siblings	

Lemma 2	

€

f '(c) =
"

$
f(c), if c ≠ x,y,z
f(x) + f(y), if c = z

x y
z T

= T '	

€

B(T) = dT (c)c∈C
∑ ⋅ f (c)

B(T) − B(T ') = dT (x) ⋅ (f (x) + f (y)) − dT ' (z) ⋅ f '(z)
= (dT ' (z) +1) ⋅ f '(z) − dT ' (z) ⋅ f '(z)
= f '(z)

Proof:	

	

	

	

	

	

	

	

Suppose (having x & y as siblings) is better than T, i.e. 	

	

	

 	

 Collapse x & y to z, forming ; as above:	

	

 	

Then:	

	

	

Contradicting optimality of T '	

	

'T̂

€

B(ˆ T)− B(ˆ T ') = f '(z)

B(ˆ T ') = B(ˆ T) − f '(z) < B(T) − f '(z) = B(T ')

T̂

€

B(ˆ T) < B(T).

x y
z
T '	

17	

Theorem: ���
Huffman gives optimal codes	

Proof: induction on |C|	

Basis: n=1,2 – immediate	

Induction: n>2	

Let x,y be least frequent	

Form C´, f´, & z, as above	

By induction, T´ is opt for (C´,f´)	

By lemma 2, T´ →T is opt for (C,f) among trees ���
with x,y as siblings	

By lemma 1, some opt tree has x, y as siblings	

Therefore, T is optimal.	

18	

Data Compression	

Huffman is optimal.	

BUT still might do better!	

Huffman encodes fixed length blocks. What if we vary
them?	

Huffman uses one encoding throughout a file. What if
characteristics change?	

What if data has structure? E.g. raster images, video,…	

Huffman is lossless. Necessary?	

LZW, MPEG, …	

19	

David A. Huffman, 1925-1999

20	

21	

Arithmetic Coding	

In some ways a generalization of Huffman
coding	

Can provide better compression (by relaxing
some of the Huffman assumptions)
approaching theoretical limit	

Algorithmically very different	

23	

24	

(bits per character)	

25	

26	

27	

28	

(any such v will do; might as well be the shortest one in binary)	

In more detail . 	

29	

 1st 	

30	

31	

In general, if ith letter of the alphabet
ai has frequency pi, and qi = sumj<i pi	

	

Associate an interval (b, l) = { x | b
<= x < b+l } with a string as follows:	

	

empty string => interval (0, 1)	

if string s => interval (b, l) then ���
string sai => interval (b+qi, l*pi)	

32	

(any such v will do; might as well be the shortest one in binary)	

33	

34	

35	

36	

37	

