CSE 52I Algorithms

Huffman and Arithmetic Codes:
 Optimal Data Compression Methods

Compression Example

I00k file, 6 letter alphabet:
File Size:
ASCII, 8 bits/char: 800kbits
$2^{3}>6 ; 3$ bits/char: 300kbits

Why?
Storage, transmission vs 5 Ghz cpu

Compression Example

I00k file, 6 letter alphabet:
File Size:
ASCII, 8 bits/char: 800 kbits
$2^{3}>6 ; 3$ bits/char: 300 kbits
better: $\xrightarrow[2.52 \text { bits/char } 74 \% * 2+26 \% * 4: 252 \mathrm{kbits}]{ }$
ASCII, 8 bits/char: 800 kbits
$2^{3}>6 ; 3$ bits/char: 300 kbits
better: $\xrightarrow[2.52 \text { bits/char } 74 \% * 2+26 \% * 4: 252 \mathrm{kbits}]{ }$
ASCII, 8 bits/char: 800 kbits
$2^{3}>6 ; 3$ bits/char: 300 kbits
better: $\xrightarrow[2.52 \text { bits/char } 74 \% * 2+26 \% * 4: 252 \mathrm{kbits}]{ }$
ASCII, 8 bits/char: 800 kbits
$2^{3}>6 ; 3$ bits/char: 300 kbits
better: $\xrightarrow[2.52 \text { bits/char } 74 \% * 2+26 \% * 4: 252 \mathrm{kbits}]{ }$ Optimal?
$\left\{\begin{array}{lll}\text { E.g.: } & \text { Why not: } \\ \text { a } & 00 & 00 \\ \text { b } & 01 & 01 \\ \text { d } & 10 & 10 \\ \text { c } & 1100 & 110 \\ \text { e } & 1101 & 1101 \\ \text { f } & 1110 & 1110\end{array}\right.$
||0|||0 = cf orec? ${ }_{3}$

Data Compression

Binary character code ("code")
each k-bit source string maps to unique code word (e.g. k=8)
"compression" alg: concatenate code words for successive k-bit "characters" of source

Fixed/variable length codes all code words equal length?
Prefix codes
no code word is prefix of another (unique decoding)

Prefix Codes $=$ Trees

a	45%
b	13%
c	12%
d	16%
e	9%
f	5%

$\underbrace{101}_{f} \underbrace{000}_{a} \underbrace{001}_{b}$
$1100012 \begin{aligned} & 101 \\ & a\end{aligned}$

Greedy Idea \#|

a	45%
b	13%
c	12%
d	16%
e	9%
f	5%

Put most frequent under root, then recurse ...

Greedy Idea \#

Greedy Idea \#2

Top down: Divide letters into 2 grolps, with $\sim 50 \%$ welght in each; recurse (Shannon-Fano codi)
Again, not terrible
$2 * .5+3 * .5=2.5$
But this tree can easily be improved! (How?)

Greedy idea \#3

Bottom up: Group least frequent letters near bottom

Huffman's Algorithm (1952)

Algorithm:
insert node for each letter into priority queue by freq while queue length > I do
remove smallest 2 ; call them x, y
make new node z from them, with $f(z)=f(x)+f(y)$ insert z into queue

Analysis: $O(n)$ heap ops: $O(n \log n)$
Goal: Minimize $B(T)=\sum_{c \in C}$ freq(c)*depth(c)
Correctness: ?!?

Correctness Strategy

Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.

Instead, show that greedy's solution is as good as any.

How: an exchange argument

Defn: A pair of leaves x, y is an inversion if $\operatorname{depth}(x) \geq \operatorname{depth}(y)$
and
freq $(x) \geq$ freq (y)

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent letter the shorter code.

before

after

$(\mathrm{d}(\mathrm{x}) * \mathrm{f}(\mathrm{x})+\mathrm{d}(\mathrm{y}) * \mathrm{f}(\mathrm{y}))-(\mathrm{d}(\mathrm{x}) * \mathrm{f}(\mathrm{y})+\mathrm{d}(\mathrm{y}) * \mathrm{f}(\mathrm{x}))=$
$(d(x)-d(y)) *(f(x)-f(y)) \geq 0$
l.e., non-negative cost savings.

Lemma I: "Greedy Choice Property"

The 2 least frequent letters might as well be siblings at deepest level

Let a be least freq, b $2^{\text {nd }}$ Let u, v be siblings at max depth, $\mathrm{f}(\mathrm{u}) \leq \mathrm{f}(\mathrm{v})$ (why must they exist?)
Then (a, u) and (b, v) are inversions. Swap them.

Lemma 2

Let (C, f) be a problem instance: C an n-letter alphabet with letter frequencies $f(c)$ for c in C.
For any x, y in C, z not in C, let C^{\prime} be the ($n-I$) letter alphabet $C-\{x, y\} \cup\{z\}$ and for all c in C^{\prime} define

$$
f^{\prime}(c)= \begin{cases}f(c), & \text { if } c \neq x, y, z \\ f(x)+f(y), & \text { if } c=z\end{cases}
$$

Let T^{\prime} be an optimal tree for (C ', f ').
Then

is optimal for (C, f) among all trees having x, y as siblings

Proof:

$$
\begin{aligned}
B(T) & =\sum_{c \in C} d_{T}(c) \cdot f(c) \\
B(T)-B\left(T^{\prime}\right) & =d_{T}(x) \cdot(f(x)+f(y))-d_{T^{\prime}}(z) \cdot f^{\prime}(z) \\
& =\left(d_{T^{\prime}}(z)+1\right) \cdot f^{\prime}(z)-d_{T^{\prime}}(z) \cdot f^{\prime}(z) \\
& =f^{\prime}(z)
\end{aligned}
$$

Suppose \hat{T} (having $\mathrm{x} \& \mathrm{y}$ as siblings) is better than T, i.e.
$B(\hat{T})<B(T)$. Collapse $\mathrm{x} \& \mathrm{y}$ to z , forming \hat{T}^{\prime}; as above:

$$
B(\hat{T})-B\left(\hat{T}^{\prime}\right)=f^{\prime}(z)
$$

Then:

$$
B\left(\hat{T}^{\prime}\right)=B(\hat{T})-f^{\prime}(z)<B(T)-f^{\prime}(z)=B\left(T^{\prime}\right)
$$

Contradicting optimality of T^{\prime}

Theorem:

Huffman gives optimal codes

Proof: induction on $|\mathrm{C}|$
Basis: $\mathrm{n}=1,2$ - immediate
Induction: $\mathrm{n}>2$
Let x, y be least frequent
Form C', f', \& z, as above
By induction, T^{\prime} is opt for ($\mathrm{C}^{\prime}, \mathrm{f}^{\prime}$)
By lemma $2, \mathrm{~T}^{\prime} \rightarrow \mathrm{T}$ is opt for (C, f) among trees with x, y as siblings
By lemma I, some opt tree has $\underline{x}, \mathrm{y}$ as siblings
Therefore, T is optimal.

Data Compression

Huffman is optimal.
BUT still might do better!
Huffman encodes fixed length blocks. What if we vary them?
Huffman uses one encoding throughout a file. What if characteristics change?
What if data has structure? E.g. raster images, video,... Huffman is lossless. Necessary?
LZW, MPEG, ...

David A. Huffman, 1925-1999

Arithmetic Coding

In some ways a generalization of Huffman coding
Can provide better compression (by relaxing some of the Huffman assumptions) approaching theoretical limit
Algorithmically very different

A rithmet ic Cods
Shannon Bound Letter i, pret $p i$ Ind need $-\sum p_{i} \log _{2} p_{i}$ on aver are (isuspoctanace)
E_{r} $\{a, b, c\}, p=1 / 3$ Huffruan $\frac{1}{3} \cdot 1+\frac{2}{3} \cdot 2=1.69$ bits/chum

Sharnnon

$$
\begin{aligned}
& -\sum \frac{1}{3} \log _{2} \frac{1}{3}=\log _{2} 3 \\
& =1.585<1.666
\end{aligned}
$$

An dea: message: aback... (base 3)

In more detail
many. 01021
f :nd intural fr
$.01021 x$ for de x
send some

$$
v \in[.61021, .0102122227)
$$

(any such v will do; might as well be the shortest one in bin8ry)

What alout $\neq f$ requencix?
$E \times: P_{a}=1 / 2, P_{b}=1 / 3, P_{c}=1 / 6$
Same idea, b ut uneqad intenvals. Eg,"a" mapes to $1^{\text {st }}$ half: "ac" to last sixth of 1 et holf.

In general, if ith letter of the alphabet
a_{i} has frequency P_{i}, and $q_{i}=\operatorname{sum}_{j<i} P_{i}$
Associate an interval $(\mathrm{b}, \mathrm{l})=\{\mathrm{x} \mid \mathrm{b}$ $<=x<b+1\}$ with a string as follows:
empty string => interval ($0, \mathrm{I}$)
if string $s=>$ interval (b, l) then
string sa $a_{i}=>$ interval $\left(b+q_{i},{ }^{*} p_{i}\right)$

How many bits?
may . 01021
f :nd interval fo $.01021 x$ for dr x
send some
$v \in[.01021, .0102122277]$
(any such v will do; might as well be the shortest one in binary)

Fact interval f width $\frac{1}{4} \leq \varepsilon<\frac{1}{2}$ contains $k / 4$ fin exactly one integer K \qquad

More generally need $\Gamma-\log _{2} \varepsilon 7$ to encode a point in an internal of width ε.

Arithmetic coding
ith lettu, Pi
shannom: - \sum pigg. maglungthn, expect $n p_{i}$ qletter i

So intural length

$$
\begin{aligned}
& \approx \pi p_{i}^{n p_{i}} \\
& \left.\Gamma-\lg _{2} \Pi p_{i} p_{i}\right] \\
& \cong-n \sum p_{i} \log _{2} p_{i} \\
& =S h
\end{aligned}
$$

$$
=\text { Shann in }
$$

More:
nou-independurt adaptive (But must be careful about arithmet ic, \#bits)

