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CSE 521���
Algorithms	



Huffman and Arithmetic Codes: ���
Optimal Data Compression Methods	
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Compression Example	



100k file, 6 letter alphabet:	


	



File Size:	


ASCII, 8 bits/char:  800kbits	


23 > 6;  3 bits/char:  300kbits	


	


	



Why?	


Storage, transmission vs 5 Ghz cpu	



a  45% 
b  13% 
c  12% 
d  16% 
e    9% 
f    5% 
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Compression Example	



100k file, 6 letter alphabet:	


	



File Size:	


ASCII, 8 bits/char:  800kbits	



23 > 6;  3 bits/char:  300kbits	


better:  ���
2.52 bits/char 74%*2 +26%*4: 252kbits	



Optimal?	



	



a  45% 
b  13% 
c  12% 
d  16% 
e    9% 
f    5% 

E.g.:	


a 	

00	


b 	

01	


d 	

10	


c 	

1100	


e 	

1101	


f 	

1110	



Why not:	


00	


01	


10	


110	


1101	


1110	



1101110 = cf or ec?	





4	



Data Compression	



Binary character code (“code”)	


each k-bit source string maps to unique code word ���
(e.g. k=8)	


“compression” alg: concatenate code words for 
successive k-bit “characters” of source	



Fixed/variable length codes	


all code words equal length?	



Prefix codes	


no code word is prefix of another (unique decoding)	





Prefix Codes = Trees	



f      a    b 

a  45% 
b  13% 
c  12% 
d  16% 
e    9% 
f    5% 

1 0 1 0 0 0 0 0 1 

  f        a       b 

100!

55!a:45!

30!

f:5!

c:12!

25!

b:13! d:16!14!

e:9!

0! 1!

0! 1!

0! 1!0! 1!

0! 1!

100!

86!

a:45!

14!

e:9!b:13!

28!

c:12! d:16!

14!

f:5!

0! 1!

0! 1!

0! 1!0! 1!0! 1!
58!

0!

1 1 0 0 0 1 0 1 
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Greedy Idea #1	



Put most frequent ���
under root, then recurse …	



a  45% 
b  13% 
c  12% 
d  16% 
e    9% 
f    5% 

a:45 

100 

    . 
  .   . 
.      . 
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Greedy Idea #1	



Top down: Put most frequent ���
under root, then recurse	


	



Too greedy: ���
unbalanced tree���
.45*1 + .16*2 + .13*3 … = 2.34  
not too bad, but imagine if all  
freqs were ~1/6: 
 (1+2+3+4+5+5)/6=3.33 

a:45 

100 

d:16 

55 

b:13 

29 

. 
  . 
    . 

a  45% 
b  13% 
c  12% 
d  16% 
e    9% 
f    5% 
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Greedy Idea #2	



Top down: Divide letters ���
into 2 groups, with ~50% ���
weight in each; recurse���
(Shannon-Fano code)	



Again, not terrible���
2*.5+3*.5 = 2.5	


But this tree ���
can easily be ���
improved!  (How?)	



a  45% 
b  13% 
c  12% 
d  16% 
e    9% 
f    5% 

100 

50 

a:45 

50 

f:5 

b:13 

25 

c:12 d:16 

25 

e:9 
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Greedy idea #3	



Bottom up: Group ���
least frequent letters ���
near bottom	



100 

f:5 

14 

. 
  . 
    . 

e:9 

c:12 

25 

b:13 

    . 
  . 
. 

a  45% 
b  13% 
c  12% 
d  16% 
e    9% 
f    5% 



(b)	



a:45!d:16!c:12! b:13!

f:5!

14!

e:9!
0! 1!

(a)	



a:45!d:16!c:12! b:13!f:5! e:9!

(f)	



100!

55!a:45!

30!

f:5!

c:12!

25!

b:13! d:16!14!

e:9!

0! 1!

0! 1!

0! 1!0! 1!

0! 1!
(e)	



55!a:45!

30!

f:5!

c:12!

25!

b:13! d:16!14!

e:9!

0! 1!

0! 1!0! 1!

0! 1!

(d)	



a:45!30!

f:5!

c:12!

25!

b:13! d:16!14!

e:9!

0! 1!0! 1!

0! 1!

(c)	



a:45!d:16!

c:12!

25!

b:13!
0! 1!

f:5!

14!

e:9!
0! 1!

.45*1 +  .41*3 + .14*4 = 2.24 bits per char 
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Huffman’s Algorithm (1952)	



Algorithm:	



	

insert node for each letter into priority queue by freq	


	

while queue length > 1 do	


	

 	

remove smallest 2; call them x, y	


	

 	

make new node z from them, with f(z) = f(x) + f(y)	


	

 	

insert z into queue	



Analysis: O(n) heap ops: O(n log n)	



Goal:       Minimize	



Correctness:  ???	



€ 

B(T ) = freq(c)*depth(c)
c∈C∑
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Correctness Strategy	



Optimal solution may not be unique, so 
cannot prove that greedy gives the only 
possible answer.	


	


Instead, show that greedy’s solution is as 
good as any.	


	


How: an exchange argument	





Claim: If we flip an inversion, cost never increases.	



Why?  All other things being equal, better to give more frequent 
letter the shorter code.	



                    before                              after	



	



	



	



I.e., non-negative cost savings.	



Defn:  A pair of leaves x,y is an inversion if 	



  depth(x) ≥ depth(y)	



and	



  freq(x) ≥ freq(y)	



(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) = 

(d(x) - d(y)) * (f(x) - f(y)) ≥ 0 

x	



y	
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The 2 least frequent letters might ���
as well be siblings at deepest level	



Let a be least freq, b 2nd	



Let u, v be siblings at ���
max depth, f(u) ≤ f(v) ���
(why must they exist?)	



Then (a,u) and (b,v) are ���
inversions.  Swap them.	


	



Lemma 1: ���
“Greedy Choice Property”	



a	



v	

u	



b	
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Let (C, f) be a problem instance: C an n-letter alphabet with 
letter frequencies f(c) for c in C.	



For any x, y in C, z not in C, let C ' be the (n-1) letter 
alphabet C - {x,y} ∪ {z} and for all c in C ' define	



	


	


Let T ' be an optimal tree for (C ',f ').	


Then 	


	


	


	


is optimal for (C,f) among all trees having x,y as siblings	



Lemma 2	



€ 

f '(c) =
" 
# 
$ 
f(c), if c ≠ x,y,z
f(x) + f(y), if c = z

x y 
z T 

= T '	





€ 

B(T) = dT (c)c∈C
∑ ⋅ f (c)

B(T) − B(T ') = dT (x) ⋅ ( f (x) + f (y)) − dT ' (z) ⋅ f '(z)
= (dT ' (z) +1) ⋅ f '(z) − dT ' (z) ⋅ f '(z)
= f '(z)

Proof:	


	


	


	


	


	


	


	


Suppose    (having x & y as siblings) is better than T, i.e. 	


	



	

 	

 Collapse x & y to z, forming      ; as above:	


	


 	

Then:	


	


	


Contradicting optimality of T '	


	



'T̂

€ 

B( ˆ T )− B( ˆ T ') = f '(z)

B( ˆ T ') = B( ˆ T ) − f '(z) < B(T) − f '(z) = B(T ')

T̂

€ 

B( ˆ T ) < B(T ).

x y 
z 
T '	
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Theorem: ���
Huffman gives optimal codes	



Proof: induction on |C|	


Basis: n=1,2 – immediate	


Induction: n>2	



Let x,y be least frequent	


Form C´, f´, & z, as above	


By induction, T´ is opt for (C´,f´)	


By lemma 2, T´ →T is opt for (C,f) among trees ���
with x,y as siblings	



By lemma 1, some opt tree has x, y as siblings	


Therefore, T is optimal.	





18	



Data Compression	



Huffman is optimal.	


BUT still might do better!	



Huffman encodes fixed length blocks.  What if we vary 
them?	



Huffman uses one encoding throughout a file.  What if 
characteristics change?	



What if data has structure?  E.g. raster images, video,…	



Huffman is lossless.  Necessary?	



LZW, MPEG, …	
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David A. Huffman, 1925-1999 
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Arithmetic Coding	



In some ways a generalization of Huffman 
coding	



Can provide better compression (by relaxing 
some of the Huffman assumptions) 
approaching theoretical limit	



Algorithmically very different	
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(bits per character)	
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(any such v will do; might as well be the shortest one in binary)	



In more detail                      .                    	





29	



 1st 	
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In general, if ith letter of the alphabet 
ai has frequency pi,  and qi = sumj<i pi	


	


Associate an interval (b, l) = { x | b 
<= x < b+l } with a string as follows:	


	


empty string => interval  (0, 1)	


if string s => interval (b, l) then ���
string sai => interval (b+qi, l*pi)	
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(any such v will do; might as well be the shortest one in binary)	
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