
1

Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Intro: Coin Changing

3

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100,
give change to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, give the largest
coin valued ≤ the amount to be paid.

Ex: $2.89.

4

Coin-Changing: Does Greedy Always Work?

Observation. Greedy algorithm is sub-optimal for US
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
  Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
  Optimal: 70, 70.

Outline & Goals	

“Greedy Algorithms”	

	
what they are	

	

Pros	

	
intuitive	

	
often simple	

	
often fast	

	

Cons	

	
often incorrect!	

	

Proofs are crucial. 3 (of many) techniques:	

	
stay ahead	

	
structural	

	
exchange arguments	

5

4.1 Interval Scheduling

Proof Technique 1: “greedy stays ahead”

7

Interval Scheduling

Interval scheduling.
  Job j starts at sj and finishes at fj.
  Two jobs compatible if they don’t overlap.
  Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

8

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

  What order?
  Does that give best answer?
  Why or why not?
  Does it help to be greedy about order?

9

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of start time sj.

[Earliest finish time] Consider jobs in ascending order of finish time fj.

[Shortest interval] Consider jobs in ascending order of interval length

fj - sj.

[Longest Interval] Reverse of the above

[Fewest conflicts] For each job, count the number of conflicting jobs cj.

Schedule in ascending order of conflicts cj.

Can You Find Counterexamples?"

E.g., Longest Interval:

Others?:

10

11

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided
it's compatible with the ones already taken.

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

12

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it’s compatible with the ones already taken.

Implementation. O(n log n).
  Remember job j* that was added last to A.
  Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← φ
for j = 1 to n {
 if (job j compatible with A)
 A ← A ∪ {j}
}
return A

jobs selected

Interval Scheduling: Earliest Finish First Greedy Algorithm

13

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

14

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

15

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

16

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B A

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

17

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

18

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E D

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

19

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

20

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

21

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

22

Interval Scheduling: Correctness	

Theorem. Earliest Finish First Greedy algorithm is optimal.	

	

Pf. (“greedy stays ahead”)	

Let i1, i2, ... ik be jobs picked by greedy, j1, j2, ... jm those in some optimal solution 	

Show f(ir) ≤ f(jr) by induction on r. ���

Basis: i1 chosen to have min finish time, so f(i1) ≤ f(j1) ���
Ind: f(ir) ≤ f(jr) ≤ s(jr+1), so jr+1 is among the candidates considered by greedy
when it picked ir+1, & it picks min finish, so f(ir+1) ≤ f(jr+1)	

Similarly, k ≥ m, else jk+1 is among (nonempty) set of candidates for ik+1	

j1	
 j2	
 jr	

i1	
 i1	
 ir	
 ir+1	

. . .	

Greedy:	

“OPT”:	
 jr+1	

job jr+1 starts after ir ends,
so included in min(…)	

4.1 Interval Partitioning

Proof Technique 2: “Structural”

24

Interval Partitioning

Interval partitioning.
  Lecture j starts at sj and finishes at fj.
  Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Room 1

Room 2

Room 3

Room 4

25

Vertices = classes;
edges = conflicting class pairs;
different colors = different assigned rooms

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

C

B

A

E

D G

F

J

H

I

Interval Partitioning as Interval Graph Coloring

Note: graph coloring is very
hard in general, but graphs
corresponding to interval
intersections are a much

 simpler special
 case.

Room 1

Room 2

Room 3

Room 4

26

Interval Partitioning

Interval partitioning.
  Lecture j starts at sj and finishes at fj.
  Goal: find minimum number of classrooms to schedule all lectures so

that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

c

a e

f

g i

j

3 3:30 4 4:30

d

b

H

27

Interval Partitioning: A “Structural” Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

no collisions at ends

28

Interval Partitioning: Earliest Start First Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Implementation. O(n log n).
  For each classroom k, maintain the finish time of the last job added.
  Keep the classrooms in a priority queue.

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn.
d ← 0

for j = 1 to n {
 if (lect j is compatible with some classroom k, 1≤k≤d)
 schedule lecture j in classroom k
 else
 allocate a new classroom d + 1
 schedule lecture j in classroom d + 1
 d ← d + 1
}

number of allocated classrooms

Implementation? Run-time?
Exercises

29

Interval Partitioning: Greedy Analysis

Observation. Earliest Start First Greedy algorithm never schedules two
incompatible lectures in the same classroom.

Theorem. Earliest Start First Greedy algorithm is optimal.
Pf (exploit structural property).
  Let d = number of classrooms that the greedy algorithm allocates.
  Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 previously used classrooms.
  Since we sorted by start time, all these incompatibilities are caused

by lectures that start no later than sj.
  Thus, we have d lectures overlapping at time sj + ε, i.e. depth ≥ d
  “Key observation” ⇒ all schedules use ≥ depth classrooms, so

d = depth and greedy is optimal ▪

4.2 Scheduling to Minimize Lateness

Proof Technique 3: “Exchange” Arguments

32

Scheduling to Minimize Lateness

Minimizing lateness problem.
  Single resource processes one job at a time.
  Job j requires tj units of processing time and is due at time dj.
  If j starts at time sj, it finishes at time fj = sj + tj.
  Lateness: j = max { 0, fj - dj }.
  Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

j

33

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

[Shortest processing time first]

 Consider jobs in ascending order of processing time tj.

[Earliest deadline first]

 Consider jobs in ascending order of deadline dj.

[Smallest slack]

 Consider jobs in ascending order of slack dj - tj.

34

Greedy template. Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of

processing time tj.

[Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

Greedy algorithm. Earliest deadline first.

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn

t ← 0
for j = 1 to n
 // Assign job j to interval [t, t + tj]:
 sj ← t, fj ← t + tj
 t ← t + tj
output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

36

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

37

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
deadline i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has
one with a pair of inverted jobs scheduled consecutively.
(If j & i aren’t consecutive, then look at the job k scheduled right
after j. If dk < dj, then (j,k) is a consecutive inversion; if not, then
(k,i) is an inversion, & nearer to each other - repeat.)

Observation. Swapping adjacent inversion reduces # inversions by 1

k i j

inversion

later deadline earlier deadline

(exactly)

de
ad

lin
e

time

38

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
deadline i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of
inversions by one and does not increase the max lateness.

Pf. Let be the lateness before the swap, and let ' be it afterwards.
  'k = k for all k ≠ i, j
  'i ≤ i
  If job j is now late:

i j

i j

before swap

after swap

€

" j = " f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (di ≤ d j)
= i (definition)

f'j

fi
inversion

(j had later
deadline,
so is less
tardy than i
was)

only j moves
later, but it’s
no later than
i was, so
max not
increased

39

Minimizing Lateness: No Inversions

Claim. All inversion-free schedules S have the same max lateness	

	

Pf. If S has no inversions, then deadlines of scheduled jobs are monotonically
nondecreasing, i.e., they increase (or stay the same) as we walk through the
schedule from left to right.	

Two such schedules can differ only in the order of jobs with the same deadlines.	

Within a group of jobs with the same deadline, the max lateness is the lateness of
the last job in the group - order within the group doesn’t matter.	

B	
 C	
A	

deadline 5 deadline 10 deadline 18

B	
 C	
 A	

t=10 lateness

40

Minimizing Lateness: Correctness of Greedy Algorithm

Theorem. Greedy schedule S is optimal

Pf. Let S* be an optimal schedule with the fewest number of inversions

Can assume S* has no idle time.
If S* has an inversion, let i-j be an adjacent inversion

Swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions
This contradicts definition of S*

So, S* has no inversions. But then Lateness(S) = Lateness(S*)

41

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the
greedy algorithm, its solution is at least as “good” as any other
algorithm's. (Part of the cleverness is deciding what’s “good.”)

Structural. Discover a simple "structural" bound asserting that every
possible solution must have a certain value. Then show that your
algorithm always achieves this bound. (Cleverness here is usually in
finding a useful structural characteristic.)

Exchange argument. Gradually transform any solution to the one found
by the greedy algorithm without hurting its quality.

4.3 Optimal Caching

1cache ���
	
Pronunciation: 'kash���
	
Function: noun ���
	
Etymology: French, from cacher to press, hide���

	

 a hiding place especially for concealing and preserving ���
 provisions or implements	

	

2cache���
	
Function: transitive verb	

	

 to place, hide, or store in a cache	

	
 	
 	
 	
 	
 	
 -Webster’s Dictionary	

43

Optimal Offline Caching

Caching.
  Cache with capacity to store k items.
  Sequence of m item requests d1, d2, …, dm.
  Cache hit: item already in cache when requested.
  Cache miss: item not already in cache when requested: must bring

requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.

Ex: k = 2, initial cache = ab,
 requests: a, b, c, b, c, a, a, b.
Optimal eviction schedule: 2 cache misses.

a b
a b
c b
c b
c b
a b

a
b
c
b
c
a

a b a
a b b

cache requests

45

Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ...

current cache: c d e f

future queries:

cache miss eject this one

Motivation: “Online” problem is typically what’s needed in practice - decide what to
evict without seeing the future. How to evaluate such an alg? Fewer misses is obviously
better, but how few? FF is a useful benchmark - best online alg is unknown, but it’s no
better than FF, so online performance close to FF’s is the best you can hope for. 	

4.4 Shortest Paths in a Graph

You’ve seen this in prerequisite courses, so this section and next two on
min spanning tree are review. I won’t lecture on them, but you should
review the material. Both, but especially shortest paths, are common
problems, having many applications.

54

Shortest Path Problem

Shortest path network.
  Directed graph G = (V, E).
  Source s, destination t.
  Length e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48.

s

3

t

2

6

7

4
5

 23

 18
 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

cost of path = sum of edge costs in path

55

Dijkstra's Algorithm

Dijkstra's algorithm.
  Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
  Initialize S = { s }, d(s) = 0.
  Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

,)(min)(
:),(eSuvue

udv +=
∈=

π

s

v

u
d(u)

S

e

shortest path to some u in explored
part, followed by a single edge (u, v)

56

Dijkstra's Algorithm

Dijkstra's algorithm.
  Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
  Initialize S = { s }, d(s) = 0.
  Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

,)(min)(
:),(eSuvue

udv +=
∈=

π

s

v

u
d(u)

shortest path to some u in explored
part, followed by a single edge (u, v)

S

e

