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CSE 521 
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Depth First Search and  
Strongly Connected Components 
 
W.L. Ruzzo, Winter 2013 



3 

Undirected  
Depth-First Search 
  Key Properties: 

1. No “cross-edges”;  
only tree- or back-edges 

2. Before returning, DFS(v) 
visits all vertices reachable 
from v via paths through 
previously unvisited 
vertices 
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  Algorithm: Unchanged 
  Key Properties: 

2. Unchanged 
1’. Edge (v,w) is: 

 Tree-edge  if w unvisited 
Back-edge  if w visited, #w<#v, on stack   
Cross-edge  if w visited, #w<#v, not on stack 
Forward-edge  if w visited, #w>#v 

Note: Cross edges only go “Right” to “Left” 

Directed Depth First Search 

As 
before 

New 



G has a cycle ⇔ DFS finds a back edge 
⇐ Easy - back edge (x,y) plus tree edges y, 
…, x form  a cycle. 

 ⇒ Why can’t we  
have something  
like this?:  
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An Application:  
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Lemma 1 

Before returning,  dfs(v) visits w iff  
– w is unvisited  
– w is reachable from v via a path through 

unvisited vertices 
Proof sketch: 

– dfs follows all direct out-edges 
– call dfs recursively at each unvisited one 
– use induction on # of such w 
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Strongly Connected Components 

  Defn: G is strongly connected if for all 
u,v there is a (directed) path from u to v 
and from v to u. 
[Equivalently:  

 there is a circuit through u and v.] 
  Defn: a strongly connected component 

of G is a maximal strongly connected 
(vertex-induced) subgraph. 
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Note: collapsed  
graph is a DAG 
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Uses for SCC’s 

  Optimizing compilers:  
–  SCC’s in program flow graph = loops 
–  SCC’s in call graph = mutual recursion 

  Operating Systems: If (u,v) means process u 
is waiting for process v, SCC’s  show 
deadlocks. 

  Spreadsheet eval: circular dependencies 
  Econometrics: SCC’s might show highly 

interdependent sectors of the economy. 
  Etc. 
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Directed Acyclic Graphs 

  If we collapse each SCC to a  
single vertex we get a directed  
graph with no cycles 
–  a directed acyclic graph or DAG 

  Many problems on directed  
graphs can be solved as follows: 
–  Compute SCC’s and resulting DAG 
–  Do one computation on each SCC 
–  Do another on the overall DAG  
–  Example: Spreadsheet evaluation 
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Two Simple SCC Algorithms 

•  u,v in same SCC iff there are  
paths u → v & v → u 

•  Transitive closure: O(n3) 

•  DFS from every u, v: O(ne) = O(n3) 
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Goal: 

  Find all Strongly Connected 
Components in linear time,  
i.e., time O(n+e) 

 (Tarjan, 1972) 
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Definition 

 The root of an SCC is the first vertex in 
it visited by DFS. 

 
 Equivalently, the root is the vertex in the 
SCC with the smallest DFS number. 



15 

Lemma 2 

All members of an SCC are  
descendants of its root. 
 
Proof: 

– all members are reachable from all others 
– so, all are reachable from its root 
– all are unvisited when root is visited 
– so, all are descendants of its root (Lemma 1) 

Exercise: show 
that each SCC is 
a contiguous 
subtree."
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Subgoal 

  Can we identify some root? 
  How about the root of the first SCC 

completely explored (returned from)  
by DFS? 

  Key idea: no exit from first SCC 
(first SCC is leftmost “leaf” in collapsed DAG) 
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Definition 

x is an exit from v (from v’s subtree) if 
– x is not a descendant of v, but 
– x is the head of a (cross- or back-) edge 

from a descendant of v (including v itself) 

NOTE:  #x < #v 
 
Ex: node #1 cannot have an exit. 

v 
x 
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#  root  exits 
1  1  - 
2  2  - 
3  3  - 
4, 5  3  3 
6  3  3, 5 
7  3  5 
8, 9  3  7 
10  10  2, 8 
11, 12  10  10 
13  13  - 



19 

Lemma 3: 
Nonroots have exits 
If v is not a root, then v has an exit. 
Proof: 

–  let r be root of v’s SCC  
–  r is a proper ancestor of v (Lemma 2) 
–  let x be the first vertex that is not a  

descendant of v on a path v → r . 
–  x is an exit 

Cor (contrapositive): If v has no exit, then v is a root. 
NB: converse not true; some roots do have exits 
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Lemma 4: 
No Escaping 1st Root 
If r is the first root from which dfs returns, then r 

has no exit 
Proof (by contradiction): 

–  Suppose x is an exit 
–  let z be root of x’s SCC 
–  r not reachable from z, else in same SCC 
–  #z ≤ #x (z ancestor of x; Lemma 2) 
–  #x < #r (x is an exit from r) 
–  #z < #r, no z → r path, so return from z first 
–  Contradiction 
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  All exits x from v have #x < #v 
  Suffices to find any of them, e.g. min # 
  Defn:  

LOW(v) = min({ #x | x an exit from v} ∪ {#v}) 
  Calculate inductively: 

LOW(v) = min of: 
–  #v 
–  { LOW(w) | w a child of v }   
–  { #x | (v,x) is a back- or cross-edge } 

  1st root : LOW(v)=v 

How to Find Exits (in 1st component) 

w1 w2 w3 

x1 
x2 v 
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#  root  exits  LOW 
1  1  -   
2  2  - 
3  3  -  3 
4, 5  3  3  3 
6  3  3, 5  3 
7  3  5  5 
8, 9  3  7  7 
10  10  2, 8 
11, 12  10  10 
13  13  - 

1st root: 
LOW(v)=v 
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Finding Other Components 

  Key idea: No exit from 
– 1st SCC 
– 2nd SCC, except maybe to 1st 
– 3rd SCC, except maybe to 1st and/or 2nd 
–  ... 
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Lemma 3’ 

 If v is not a root, then v has an exit  . 
Proof: 

–  let r be root of v’s SCC  
–  r is a proper ancestor of v (Lemma 2) 
–  let x be the first vertex that is not a 

descendant of v on a path v → r . 
– x is an exit 

Cor: If v has no exit , then v is a root. 

v 

x 

r 

in v’s SCC 

in v’s SCC 

in v’s SCC 
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 If r is the first root from which dfs 
returns, then r has no exit 

Proof: 
– Suppose x is an exit 
–  let z be root of x’s SCC 
–  r not reachable from z, else in same SCC 
– #z ≤ #x (z ancestor of x; Lemma 2) 
– #x < #r (x is an exit from r) 
– #z < #r, no z → r path, so return from z first 
– Contradiction 

except possibly  
to the first (k-1)  
components 

Lemma 4’ 
kth 

i.e., x in first (k-1) 

r 
x 

z ? 
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How to Find Exits (in 1st component) 

  All exits x from v have #x < #v 
  Suffices to find any of them, e.g. min # 
  Defn:  

LOW(v) = min({ #x | x an exit from v } ∪ {#v}) 
  Calculate inductively: 

LOW(v) = min of: 
–  #v 
–  { LOW(w) | w a child of v } 
–  { #x | (v,x) is a back- or cross-edge } 

kth 

and x not in first  
(k-1) components 

NB: defn of "exit" has not changed, but we’re not interested in exits into previous SCCs 
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SCC Algorithm 
SCC(v) 

 #v = vertex_number++; v.low = #v; push(v) 
 for all edges (v,w) 
  if #w == 0 then  
   SCC(w); v.low = min(v.low, w.low) // tree edge 
  else if #w < #v && w.scc == 0 then  
   v.low = min(v.low, #w)       // cross- or back-edge 
 if #v == v.low then             // v is root of new scc 
  scc#++;  
  repeat  
   w = pop(); w.scc = scc#;    // mark SCC members 
  until w==v 

#v = DFS number 
v.low = LOW(v) 
v.scc = component # 
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#  root  exits  LOW 
1  1  -  1 
2  2  -  2 
3  3  -  3 
4, 5  3  3  3 
6  3  3, 5  3 
7  3  5  5 
8, 9  3  7  7 
10  10  2, 8  10 
11, 12  10  10  10 
13  13  -  13 

Has exits,  
but is a root 
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Complexity 

  Look at every edge once 
  Look at every vertex (except via in-

edge) at most once 

  Time = O(n+e) 
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 Where to start 

  Unlike undirected DFS, start vertex matters 
  Add “outer loop”:  

 
mark all vertices unvisited 
while there is unvisited vertex v do 

 scc(v) 
 

  Exercise: redo example starting from another 
vertex, e.g. #11 or #13 (which become #1) 
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Example 

A"

F"E"

C"B" D"

1 ""

2 ""

3 ""

4 ""

5 ""

6 ""

dfs#       v      root    exits  low(v) 
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Example 
    v  Low(v)     v  Low(v) 


