
1

CSE 521
Algorithms

Depth First Search and
Strongly Connected Components

W.L. Ruzzo, Winter 2013

3

Undirected
Depth-First Search
  Key Properties:

1. No “cross-edges”;
only tree- or back-edges

2. Before returning, DFS(v)
visits all vertices reachable
from v via paths through
previously unvisited
vertices

4

  Algorithm: Unchanged
  Key Properties:

2. Unchanged
1’. Edge (v,w) is:

 Tree-edge if w unvisited
Back-edge if w visited, #w<#v, on stack
Cross-edge if w visited, #w<#v, not on stack
Forward-edge if w visited, #w>#v

Note: Cross edges only go “Right” to “Left”

Directed Depth First Search

As
before

New

G has a cycle ⇔ DFS finds a back edge
⇐ Easy - back edge (x,y) plus tree edges y,
…, x form a cycle.

 ⇒ Why can’t we
have something
like this?:

5

An Application:

6

Lemma 1

Before returning, dfs(v) visits w iff
– w is unvisited
– w is reachable from v via a path through

unvisited vertices
Proof sketch:

– dfs follows all direct out-edges
– call dfs recursively at each unvisited one
– use induction on # of such w

7

Strongly Connected Components

  Defn: G is strongly connected if for all
u,v there is a (directed) path from u to v
and from v to u.
[Equivalently:

 there is a circuit through u and v.]
  Defn: a strongly connected component

of G is a maximal strongly connected
(vertex-induced) subgraph.

8

1

2
10

9

8

3

4

5
6

7

11
12

13

9

1

2
10

9

8

3

4

5
6

7

11
12

13

Note: collapsed
graph is a DAG

10

Uses for SCC’s

  Optimizing compilers:
–  SCC’s in program flow graph = loops
–  SCC’s in call graph = mutual recursion

  Operating Systems: If (u,v) means process u
is waiting for process v, SCC’s show
deadlocks.

  Spreadsheet eval: circular dependencies
  Econometrics: SCC’s might show highly

interdependent sectors of the economy.
  Etc.

11

Directed Acyclic Graphs

  If we collapse each SCC to a
single vertex we get a directed
graph with no cycles
–  a directed acyclic graph or DAG

  Many problems on directed
graphs can be solved as follows:
–  Compute SCC’s and resulting DAG
–  Do one computation on each SCC
–  Do another on the overall DAG
–  Example: Spreadsheet evaluation

1

2 10

9

8

3

4

5
6

7

11
12

13

1

2 10-12

3-9 13

12

Two Simple SCC Algorithms

•  u,v in same SCC iff there are
paths u → v & v → u

•  Transitive closure: O(n3)

•  DFS from every u, v: O(ne) = O(n3)

13

Goal:

  Find all Strongly Connected
Components in linear time,
i.e., time O(n+e)

 (Tarjan, 1972)

14

Definition

 The root of an SCC is the first vertex in
it visited by DFS.

 Equivalently, the root is the vertex in the
SCC with the smallest DFS number.

15

Lemma 2

All members of an SCC are
descendants of its root.

Proof:

– all members are reachable from all others
– so, all are reachable from its root
– all are unvisited when root is visited
– so, all are descendants of its root (Lemma 1)

Exercise: show
that each SCC is
a contiguous
subtree."

16

Subgoal

  Can we identify some root?
  How about the root of the first SCC

completely explored (returned from)
by DFS?

  Key idea: no exit from first SCC
(first SCC is leftmost “leaf” in collapsed DAG)

17

Definition

x is an exit from v (from v’s subtree) if
– x is not a descendant of v, but
– x is the head of a (cross- or back-) edge

from a descendant of v (including v itself)

NOTE: #x < #v

Ex: node #1 cannot have an exit.

v
x

18

1

2
10

9

8

3

4

5
6

7

11
12

13

root exits
1 1 -
2 2 -
3 3 -
4, 5 3 3
6 3 3, 5
7 3 5
8, 9 3 7
10 10 2, 8
11, 12 10 10
13 13 -

19

Lemma 3:
Nonroots have exits
If v is not a root, then v has an exit.
Proof:

–  let r be root of v’s SCC
–  r is a proper ancestor of v (Lemma 2)
–  let x be the first vertex that is not a

descendant of v on a path v → r .
–  x is an exit

Cor (contrapositive): If v has no exit, then v is a root.
NB: converse not true; some roots do have exits

r
v

x
Id

ea
: F

ol
lo

w
 c

yc
le

 t
o

ro
ot

20

Lemma 4:
No Escaping 1st Root
If r is the first root from which dfs returns, then r

has no exit
Proof (by contradiction):

–  Suppose x is an exit
–  let z be root of x’s SCC
–  r not reachable from z, else in same SCC
–  #z ≤ #x (z ancestor of x; Lemma 2)
–  #x < #r (x is an exit from r)
–  #z < #r, no z → r path, so return from z first
–  Contradiction

r
x

z ?
Id

ea
: E

xi
t ⇒

 B
ig

ge
r C

yc
le

21

  All exits x from v have #x < #v
  Suffices to find any of them, e.g. min #
  Defn:

LOW(v) = min({ #x | x an exit from v} ∪ {#v})
  Calculate inductively:

LOW(v) = min of:
–  #v
–  { LOW(w) | w a child of v }
–  { #x | (v,x) is a back- or cross-edge }

  1st root : LOW(v)=v

How to Find Exits (in 1st component)

w1 w2 w3

x1
x2 v

22

1

2
10

9

8

3

4

5
6

7

11
12

13

root exits LOW
1 1 -
2 2 -
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8
11, 12 10 10
13 13 -

1st root:
LOW(v)=v

23

Finding Other Components

  Key idea: No exit from
– 1st SCC
– 2nd SCC, except maybe to 1st
– 3rd SCC, except maybe to 1st and/or 2nd
–  ...

24

Lemma 3’

 If v is not a root, then v has an exit .
Proof:

–  let r be root of v’s SCC
–  r is a proper ancestor of v (Lemma 2)
–  let x be the first vertex that is not a

descendant of v on a path v → r .
– x is an exit

Cor: If v has no exit , then v is a root.

v

x

r

in v’s SCC

in v’s SCC

in v’s SCC

25

 If r is the first root from which dfs
returns, then r has no exit

Proof:
– Suppose x is an exit
–  let z be root of x’s SCC
–  r not reachable from z, else in same SCC
– #z ≤ #x (z ancestor of x; Lemma 2)
– #x < #r (x is an exit from r)
– #z < #r, no z → r path, so return from z first
– Contradiction

except possibly
to the first (k-1)
components

Lemma 4’
kth

i.e., x in first (k-1)

r
x

z ?

26

How to Find Exits (in 1st component)

  All exits x from v have #x < #v
  Suffices to find any of them, e.g. min #
  Defn:

LOW(v) = min({ #x | x an exit from v } ∪ {#v})
  Calculate inductively:

LOW(v) = min of:
–  #v
–  { LOW(w) | w a child of v }
–  { #x | (v,x) is a back- or cross-edge }

kth

and x not in first
(k-1) components

NB: defn of "exit" has not changed, but we’re not interested in exits into previous SCCs

27

SCC Algorithm
SCC(v)

 #v = vertex_number++; v.low = #v; push(v)
 for all edges (v,w)
 if #w == 0 then
 SCC(w); v.low = min(v.low, w.low) // tree edge
 else if #w < #v && w.scc == 0 then
 v.low = min(v.low, #w) // cross- or back-edge
 if #v == v.low then // v is root of new scc
 scc#++;
 repeat
 w = pop(); w.scc = scc#; // mark SCC members
 until w==v

#v = DFS number
v.low = LOW(v)
v.scc = component #

28

1

2
10

9

8

3

4

5
6

7

11
12

13

root exits LOW
1 1 - 1
2 2 - 2
3 3 - 3
4, 5 3 3 3
6 3 3, 5 3
7 3 5 5
8, 9 3 7 7
10 10 2, 8 10
11, 12 10 10 10
13 13 - 13

Has exits,
but is a root

29

Complexity

  Look at every edge once
  Look at every vertex (except via in-

edge) at most once

  Time = O(n+e)

30

 Where to start

  Unlike undirected DFS, start vertex matters
  Add “outer loop”:

mark all vertices unvisited
while there is unvisited vertex v do

 scc(v)

  Exercise: redo example starting from another
vertex, e.g. #11 or #13 (which become #1)

31

Example

A"

F"E"

C"B" D"

1 ""

2 ""

3 ""

4 ""

5 ""

6 ""

dfs# v root exits low(v)

32

33

Example
 v Low(v) v Low(v)

