CSE 521: Algorithms

Graphs and Graph Algorithms

Larry Ruzzo

Graphs

An extremely important formalism for
representing (binary) relationships

Obijects: "vertices," aka "nodes”
Relationships between pairs:

"edges," aka "arcs”

Formally, a graph G = (V, E) is a pair of sets,
V the vertices and E the edges

Undirected Graph G = (V,E)

Graph Traversal

Learn the basic structure of a graph

"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Being orderly helps. Two common ways:

Breadth-First Search
Depth-First Search

Breadth-First Search

ldea: Explore from s in all possible directions, layer by layer.

BFS algorithm. I - — _
Ly={s} S~ L — L — e Ly
L, = all neighbors of L,.

L, = all nodes not in L, or L, and having an edge to a node in L,.

L., = all nodes not in earlier layers, and having an edge to a node in L.

Theorem. For each i, L, consists of all nodes at distance
(i.e., min path length) exactly i from s.

Cor: There is a path from s to t iff t appears in some layer.

Properties of (Undirected) BFS(V)

BFS(v) visits x if and only if there is a path in G from
Vv to X.

Edges into then-undiscovered vertices define a tree
— the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices

u such that the shortest path (in G, not just the ot true

tree) from the root v is of length i. | of every
. e . spanning

All non-tree edges join vertices on the tree!

same or adjacent levels J

BFS Application: Shortest Paths
Tree (solid edges) O
gives shortest
paths from

can label by distances from start
all edges connect same/adjacent levels |,

BFS Application: Shortest Paths
(1 0

Tree (solid edges)

gives shortest |
paths from
start vertex

can label by distances from start
all edges connect same/adjacent levels |

BFS Application: Shortest Paths
(1) 0

Tree (solid edges)

gives shortest !
paths from
start vertex

can label by distances from start
all edges connect same/adjacent levels

BFS Application: Shortest Paths
o 0

Tree (solid edges)
gives shortest
paths from

start vertex

can label by distances from start
all edges connect same/adjacent levels |,

Why fuss about trees!?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs

So, this is often a good way to approach a graph
problem: find a "nice" tree in the graph, i.e., one

such that non-tree edges have some simplifying
structure

E.g., BFS finds a tree s.t. level-jumps are minimized

DFS (below) finds a different tree, but it also has
Interesting structure...

Depth-First Search

Follow the first path you find as far as you can go

Back up to last unexplored edge when you reach a
dead end, then go as far you can

Naturally implemented using recursive calls or a
stack

DFS(v) — Recursive version

Global Initialization:

for all nodes v, v.dfs# = -1 // mark v "undiscovered"
dfscounter = 0

DFS(v)
v.dfs# = dfscounter++ /[v "discovered", number it
for each edge (v,x)
if (x.dfs# = -1) Il tree edge (x previously undiscovered)
DFS(x)
else ... /I code for back-, fwd-, parent-
I/ edges, if needed;

Why fuss about trees (again)?

BFS tree #+ DFS tree, but, as with BFS, DFS

has found a tree in the graph s.t. non-tree
edges are "simple” — only descendant/ancestor

Proof below

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists) .

‘O

"""" Call Stack

at each vertex . . K
aresoted [n Veeemereen @ (Edge list):
alphabeticall

i ’ ‘ inid A (B,J)

.
‘e,
IS
*
L

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists
at epapch vertgx Call StaCk:
are sorted (Edge list)
alphabetically

* & .
’ ! : A((B,J
* N - . ,
.’ n O‘
n
S B (A,C,J)
L4
0 n ¢‘) b}
L4]
D - .,
L 4 u .
& L 4 .. = .
0’ Iy [] *
L4 *
L4 *
L4

.
‘e,
IS
*
L2

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists . _
ateachvertex = =~ = ™. Call Stack.
aresoted [eeeecereenns @ (Edge list)
alphabeticall \ /
e N A B
B (X.2.J)
C (B,D,G,H)

-
‘e,
Y
*
-

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists . .
ateachvertex = =~ = ™. Call Stack.
aresoted (1R Yererrrreennn @ (Edge list)
alphabeticall \ 4
p y :: E ‘\‘ A (K'J)
:': é ““‘ B (%g 1J)
IR ,': E “" C (H’W’G!H)
@ : : : D (C,E,F)

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists
at epapch vertgx """"" Call Stack:
aresorted (R Feeereereereenns @ (Edge list)
alphabetically N AE)
B (%,2.J)
4 C (B.¥,G,H)
.......... .:.' E “‘ D (gz F
O COO *

Color code:

undiscovered

DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0..
L 4

-
LTR
Y
*
-

discovered
fully-explored

Call Stack:
(Edge list)

20

Color code:

undiscovered

DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0..
L 4

‘e,
Y
.'n.
-

discovered
fully-explored

Call Stack:
(Edge list)

21

Color code:

undiscovered

DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0..
L 4

‘e,
Y
.'n.
-

discovered
fully-explored

Call Stack:
(Edge list)

22

Color code:

undiscovered

DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0..
L 4

Yo,
.,
....
-

discovered
fully-explored

Call Stack:
(Edge list)

23

Color code:

undiscovered

DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0..
L 4

'..
..
....
L4

discovered
fully-explored

Call Stack:
(Edge list)

24

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists . _
ateachvertex = =~ = ™. Call Stack.
aresoted [R5 beeeeereene @ (Edge list)
alphabeticall \ 4
P ' SoE A (B.J)
l.: é ““‘ B (%g !J)
IR ,': g “"‘ C (H’Z!G1H)
.......... : : : D (Z.EF)

25

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists . .
ateachvertex = =~ = ™. Call Stack.
aresorted [(n o Veeeeeeeene @ (Edge list)
alphabeticall \ 4
e N A B
B (X,2,J)
C (B.@,G,H)

LTR
Y
.'n.
-

26

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists . .
ateachvertex = =~ = ™. Call Stack.
aresorted [(n o Veeeeeeeene @ (Edge list)
alphabeticall \ 4
e N A B
B (X,2,J)
C (B.B.@ H)

LTR
Y
.'n.
-

27

Color code:

undiscovered

DFS(A)

Suppose edge lists

0..
L 4

at each vertex .
aresorted 000 p A Ferreeeeeeennes
alphabetically \ 4

discovered
fully-explored

Call Stack:
(Edge list)

B.J)
K2.J)
B.B.2.H)

(
(
(
(C,1,J)

TOW>

28

Color code:

undiscovered

DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

0..
L 4

discovered
fully-explored

Call Stack:
(Edge list)

B.J)
K2.J)
B.B.&.H)

ZXJ)
H)

N N N N

A
B
C
H
I

N

29

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists
at epapch vertgx """"" Call Stacl.c
aresorted [R 9 beeeerenne. @ (Edge list)
alphabetically .. A
B (X,2,J)
C (B,B..H)
: H (Z /)
ONCROIONK

30

Color code:

undiscovered
D FS (A) discovered
fully-explored
Suppose edge lists . _
ateachvertex = =~ = ™. Call Stacl.<.
aresoted [R5 beeeeereene @ (Edge list)
alphabeticall \ 4
P ' SoE A (B.J)
l:. é ““‘ B (%g 5J)
.': é “"‘ C (B,,w ’ z 1W
a ! := : H(Z.1J)

31

DFS(A)

Suppose edge lists
at each vertex

are sorted
alphabetically

..
IS
e
.

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

32

Color code:
undiscovered

D FS (A) discovered
@ fully-explored
Suppose edge lists
at epapch vertgx ‘e, Call Stack:
are sorted @ _________ @ (Edge list)
alphabetically A (B.J)
@ B (X2,J)
“"‘ C (B’Jlg,m
' H (2 Y4)
@ W @Q @
- K (J,L)

DFS(A)

Suppose edge lists

at each vertex %
are sorted @
alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

BJ)
K2 .J)
B.B.&.H)
Z 4
ABHKL)
Ly

J,K,M)

N N N N

A
B
C
H
J

K
L

AN N N

34

DFS(A)

Suppose edge lists

at each vertex %
are sorted @
alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

(B.J)
(K.2.J)
(BB, &,H)
(214
(ABHK,L)
Ay
EJ{K/M)

L)

S rXCTO®>

35

DFS(A)

Suppose edge lists

at each vertex %
are sorted @
alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

(B.J)
(K.2.J)
(BB, &,H)
(214
(ABHK,L)
Ay
(VM)

rXCITO®>

36

DFS(A)

Suppose edge lists

at each vertex e
are sorted @
alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

B.J)
K2.J)
B.B.&.H)
Z 4
ABHKL)
Ly

ACITOTX>

N N

37

DFS(A)

Suppose edge lists

at each vertex e
are sorted @
alphabetically

Color code:

undiscovered

discovered

fully-explored

Call Stack:
(Edge list)

38

Color code:
undiscovered

DFS(A)

discovered
@ fully-explored
Suppose edge lists

e, Call Stack:

at each vertex . _
are sorted @ _________ @ (Edge list)
alphabetically

Color code:
undiscovered

D FS (A) discovered
@ fully-explored
Suppose edge lists N _
at each vertex ‘e, Call Stacl_<.
are sorted @ _________ @ (Edge list)
alphabeticall
e A B
@ “‘ B (%gﬂj)
) C (BJB.E.H
! I : H (2 X4)

Color code:
undiscovered

D FS (A) @ discovered

fully-explored

Suppose edge lists

at each vertex ‘e, Call Stacl_(:
are sorted @ _________ @ (Edge list)
alphabeticall
i ’ AB)
@ “‘ B (%gﬂj)
) C (BB.E.M

Color code:
undiscovered

fully-explored

D FS (A) @ discovered

i
Suppose edge lists ., il Stack

at each vertex _
are sorted @ (Edge list)
alphabetically

B (X.2.J)

2

, A (BJ)

@ L 3
L 3

 J
= L J

Color code:
undiscovered

fully-explored

D FS (A) @ discovered

i
Suppose edge lists ., il Stack

at each vertex _
are sorted @ (Edge list)
alphabetically

B (X.2.4)

2

, A (BJ)

@ L 3
L 3

 J
= L J

Color code:
undiscovered

fully-explored

D FS (A) @ discovered

i
Suppose edge lists ., il Stack

at each vertex _
are sorted @ (Edge list)
alphabetically

L 4
L 4

, A (BJ)

@ L 3
L 3

 J
= L J

Color code:
undiscovered

fully-explored

D FS (A) @ discovered

i
Suppose edge lists ., il Stack

at each vertex _
are sorted @ (Edge list)
alphabetically

L 4
L 4

® RV

Color code:
undiscovered

fully-explored

D FS (A) @ discovered

i
Suppose edge lists ., il Stack

at each vertex _
are sorted @ (Edge list)
alphabetically

2
L 3

! TA-DA!!

L 3
 J
= L J

DFS(A)

Edge code:
Tree edge
Back edge

47

DFS(A)

IS
e,
IS
%
IS

Edge code:
Tree edge
Back edge

48

Edge code:

Tree edge
DFS(A) Back edge ==----

.
.
.
A 3
.
.
.
.
\J

*
.
*
: @
.

49

DFS(A) Ol

.
|

“ BaCk edge EEEEER
|
DY |
* e
2)
e
.
. .
@))
* .
*
*
‘ @

]
«*
EEEEEEEEEEER
‘0
’0
*
‘0
*

50

Edge code:

Tree edge
Back edge

51

Tree edge
Back edge

Edge code:

.
|
|
|
-
)

-
|

DFS(A)

‘@
L 4
L 4

0

0

.
|)
-
|
-
.
|
|
|
|)
|

‘
L 4

52

53

Tree edge
Back edge ===-=-
No Cross Edges!

Edge code:

% 2e .
*
*
*
*
o @
@0 m
@ IIIlIlIIIIIIIIIIIIIIIIIIIIIII@

<
% ©
A

Properties of (Undirected) DFS(V)

Like BFS(v):
DFS(v) visits x if and only if there is a path in G from v to

X (through previously unvisited vertices)

Edges into then-undiscovered vertices define a tree —
the "depth first spanning tree" of G

Unlike the BFS tree:

the DF spanning tree isn't minimum depth
its levels don't reflect min distance from the root

non-tree edges never join vertices on the same or
adjacent levels

BUT...

54

Non-tree edges

All non-tree edges join a vertex and one of
its descendents/ancestors in the DFS tree

No cross edges!

55

Why fuss about trees (again)?

As with BFS, DFS has found a tree in the

graph s.t. non-tree edges are "simple"--only
descendant/ancestor

56

A simple problem on trees

Given: tree T, a value L(v) defined for every
vertex vin T

Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself).

How? Depth first search, using:

V() = L(v) if v 1s a leaf
()= min(L(v), min M(w)) otherwise

w a child of v

57

Application: Articulation Points

A node in an undirected graph is an
articulation point iff removing it
disconnects the graph (or, more generally,
increases the number of connected components)

Articulation points represent vulnerabilities in

a network — single points whose failure would
split the network into 2 or more
disconnected components

58

Identifying key proteins on the anthrax predicted network

[Dsienz=rehied

[Enzmyme

[0 Erzymeregulader
[lgand binding

[[] MNcleic acid binding

[Sigmalimn=zducer

[Siorag= profsn
. Stiuciual prot=in
[l Tranzaipion regulader

[Tranzporier

Articulation p()int proteins Ram Samudrala/Jason McDermott

Articulation Points

@ articulation point
/ iff its removal
disconnects

the graph

N I
N5
®

|
SEONENO

60

Articulation Points

Simple Case: Artic. Pts in a tree

Leaves — never articulation points
Internal nodes — always articulation points

Root — articulation point if and only if two or
more children

Non-tree: extra edges remove some
articulation points (which ones?)

62

Articulation Points from DFS

Root node is an articulation point

iff it has more than one child

Non-leaf, non-root node
u is an articulation point

0

1 some child y of u s.t.
no non-tree edge goes
above u from y or below

_eaf is never an articulation point

AN

If u’s removal does NOT separate
x, there must be an exit from x's
subtree. How? Via back edge.

63

Articulation Points:

the "LOW" function

Definition: LOWV(v) is |the lowest dfs# of any

vertex that is either in the dfs subtree rooted at v
(including v itself) or| directly connected to a vertex

in that subtree by a back edge.

Key idea I: if some child x of v has LOW(x) =
dfs#(v) then v is an articulation point (excl. root)
Key idea 2: LOW(v) =
min ({dfs#(v)} U {LOW(w) | w a child of v } U
{ dfs#(x) | {v,x} is a back edge from v })

64

DFS(v) for
Finding Articulation Points

Global initialization: dfscounter = 0; v.dfs# = -| for all v.
DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# /[initialization
for each edge {v,x}
if (x.dfs# == -1) // x is undiscovered
DFS(x)

v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print "v is art. pt., separating x" Equiv: "if({v,x}
else if (x is not v's parent) ~ is a back edge)"
v.low = min(v.low, x.dfs#) Why?

Articulation Point

>
—
O
>

DFS #

Low

SFXCTIOMMOO T >

66

Y
NP N XD
I.__.._I.q.f/ - ©

66

Vertex|DFS #| Low

<D0 QWULOIT _=—»HX a2

Articulation Point /

L4 L4
& L
4 LJ
& L
& L
& L
& L
&

L
L4
&
v
[
L
L]
L
®

Articulation Points

>
—
O
>

DFS #

|—
o)
=

l:
]
]
]
]
]
.]
.]
.]
. []
. []
. []
. [
.]
“ =
.]
_ . u
U . -
3 . -
L . =
L . -
8 . []
4 \J []
L .]
L “ n
L4
v s .
2 .
° . "
L4 L4 e B
L4 4 .
4 4
L4 L -
4 L]
L4 L
. . @
L4 &
]

SFXCTIOMMOO T >

—
OO OO, WN =

-k -
WINN =

—h
WO W= O0OW=0W = = -

- —d
w o

0,

o
~N

Summary

Graphs — abstract relationships among pairs of objects

Terminology — node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

Representation — edge list, adjacency matrix
Nodes vs Edges — m = O(n?), often less

BFS — Layers, queue, shortest paths, all edges go to same or
adjacent layer

DFS — recursion/stack; all edges ancestor/descendant

Algorithm — articulation points

68

