CSE 521: Algorithms

Graphs and Graph Algorithms

Larry Ruzzo



Graphs

An extremely important formalism for
representing (binary) relationships

Obijects: "vertices," aka "nodes”
Relationships between pairs:

"edges," aka "arcs”

Formally, a graph G = (V, E) is a pair of sets,
V the vertices and E the edges



Undirected Graph G = (V,E)




Graph Traversal

Learn the basic structure of a graph

"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s

Being orderly helps. Two common ways:

Breadth-First Search
Depth-First Search



Breadth-First Search

ldea: Explore from s in all possible directions, layer by layer.

BFS algorithm. I - — _
Ly={s} S~ L — L — e Ly
L, = all neighbors of L,.

L, = all nodes not in L, or L, and having an edge to a node in L,.

L., = all nodes not in earlier layers, and having an edge to a node in L.

Theorem. For each i, L, consists of all nodes at distance
(i.e., min path length) exactly i from s.

Cor: There is a path from s to t iff t appears in some layer.



Properties of (Undirected) BFS(V)

BFS(v) visits x if and only if there is a path in G from
Vv to X.

Edges into then-undiscovered vertices define a tree
— the "breadth first spanning tree" of G

Level i in this tree are exactly those vertices

u such that the shortest path (in G, not just the ot true

tree) from the root v is of length i. | of every
. e . spanning

All non-tree edges join vertices on the tree!

same or adjacent levels J




BFS Application: Shortest Paths
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Why fuss about trees!?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs

So, this is often a good way to approach a graph
problem: find a "nice" tree in the graph, i.e., one

such that non-tree edges have some simplifying
structure

E.g., BFS finds a tree s.t. level-jumps are minimized

DFS (below) finds a different tree, but it also has
Interesting structure...



Depth-First Search

Follow the first path you find as far as you can go

Back up to last unexplored edge when you reach a
dead end, then go as far you can

Naturally implemented using recursive calls or a
stack



DFS(v) — Recursive version

Global Initialization:

for all nodes v, v.dfs# = -1 // mark v "undiscovered"
dfscounter = 0

DFS(v)
v.dfs# = dfscounter++ /[ v "discovered", number it
for each edge (v,x)
if (x.dfs# = -1) Il tree edge (x previously undiscovered)
DFS(x)
else ... /I code for back-, fwd-, parent-
I/ edges, if needed;



Why fuss about trees (again)?

BFS tree #+ DFS tree, but, as with BFS, DFS

has found a tree in the graph s.t. non-tree
edges are "simple” — only descendant/ancestor

Proof below
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Properties of (Undirected) DFS(V)

Like BFS(v):
DFS(v) visits x if and only if there is a path in G from v to

X (through previously unvisited vertices)

Edges into then-undiscovered vertices define a tree —
the "depth first spanning tree" of G

Unlike the BFS tree:

the DF spanning tree isn't minimum depth
its levels don't reflect min distance from the root

non-tree edges never join vertices on the same or
adjacent levels

BUT...
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Non-tree edges

All non-tree edges join a vertex and one of
its descendents/ancestors in the DFS tree

No cross edges!

55



Why fuss about trees (again)?

As with BFS, DFS has found a tree in the

graph s.t. non-tree edges are "simple"--only
descendant/ancestor
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A simple problem on trees

Given: tree T, a value L(v) defined for every
vertex vin T

Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself).

How? Depth first search, using:

V() = L(v) if v 1s a leaf
()= min(L(v), min M(w)) otherwise

w a child of v
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Application: Articulation Points

A node in an undirected graph is an
articulation point iff removing it
disconnects the graph (or, more generally,
increases the number of connected components)

Articulation points represent vulnerabilities in

a network — single points whose failure would
split the network into 2 or more
disconnected components
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Identifying key proteins on the anthrax predicted network
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Articulation p()int proteins Ram Samudrala/Jason McDermott




Articulation Points

@ articulation point
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Articulation Points




Simple Case: Artic. Pts in a tree

Leaves — never articulation points
Internal nodes — always articulation points

Root — articulation point if and only if two or
more children

Non-tree: extra edges remove some
articulation points (which ones?)
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Articulation Points from DFS

Root node is an articulation point

iff it has more than one child

Non-leaf, non-root node
u is an articulation point

0

1 some child y of u s.t.
no non-tree edge goes
above u from y or below

_eaf is never an articulation point

AN

If u’s removal does NOT separate
x, there must be an exit from x's
subtree. How? Via back edge.

63




Articulation Points:

the "LOW" function

Definition: LOWV(v) is |the lowest dfs# of any

vertex that is either in the dfs subtree rooted at v
(including v itself) or| directly connected to a vertex

in that subtree by a back edge.

Key idea I: if some child x of v has LOW(x) =
dfs#(v) then v is an articulation point (excl. root)
Key idea 2: LOW(v) =
min ( {dfs#(v)} U {LOW(w) | w a child of v } U
{ dfs#(x) | {v,x} is a back edge from v })
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DFS(v) for
Finding Articulation Points

Global initialization: dfscounter = 0; v.dfs# = -| for all v.
DFS(v)
v.dfs# = dfscounter++
v.low = v.dfs# /[ initialization
for each edge {v,x}
if (x.dfs# == -1) // x is undiscovered
DFS(x)

v.low = min(v.low, x.low)
if (x.low >= v.dfs#)

print "v is art. pt., separating x" Equiv: "if( {v,x}
else if (x is not v's parent)  ~ is a back edge)"
v.low = min(v.low, x.dfs#) Why?
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Summary

Graphs — abstract relationships among pairs of objects

Terminology — node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

Representation — edge list, adjacency matrix
Nodes vs Edges — m = O(n?), often less

BFS — Layers, queue, shortest paths, all edges go to same or
adjacent layer

DFS — recursion/stack; all edges ancestor/descendant

Algorithm — articulation points
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