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Efficiency 

Our correct TSP algorithm was incredibly slow	

Basically slow no matter what computer you have	

We want a general theory of “efficiency” that is	


Simple	

Objective	


Relatively independent of changing technology	

But still predictive – “theoretically bad” algorithms should 
be bad in practice and vice versa (usually)	
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Defining Efficiency 

“Runs fast on typical real problem instances”	

	

Pro: 	


sensible, bottom-line-oriented	


	


Con:	

moving target (diff computers, compilers, Moore’s law) 	


highly subjective (how fast is “fast”?  What’s “typical”?)	
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computational complexity 

The time complexity of an algorithm associates 
a number T(n), the worst-case time the 
algorithm takes, with each problem size n.	


	

Mathematically,	


T: N → R	

i.e.,T is a function mapping non-negative integers 
(problem sizes) to real numbers (number of 
steps).	

“Reals” so we can say, e.g., sqrt(n) instead of ⎡sqrt(n)⎤	
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computational complexity 

Problem size !

Ti
m

e!

T(n)!
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computational complexity: general goals 

Asymptotic growth rate, i.e., characterize growth 
rate of worst-case run time as a function of problem 
size, up to a constant factor, e.g. T(n) = O(n2)	

	

Why not try to be more precise?	

	
Average-case, e.g., is hard to define, analyze	

Technological variations (computer, compiler, OS, …) 
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford this today, how 
much longer will it take when my business is 2x larger?  
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)  ���
Big-O analysis is adequate to address this.	
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computational complexity 
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Problem size !

Ti
m

e!

T(n)!

2n log2n!

n log2n!



O-notation, etc. 

Given two functions f and g:N→R	

f(n) is O(g(n)) iff there is a constant c>0 so that 	

	
                      f(n) is eventually always ≤ c g(n)	


	


f(n) is Ω (g(n)) iff there is a constant c>0 so that 	

	
                      f(n) is eventually always ≥ c g(n) 	


	


f(n) is Θ (g(n)) iff there is are constants c1, c2>0 so that ���
	
 	
 	
eventually always c1g(n) ≤ f(n) ≤ c2g(n)	
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Examples 

10n2-16n+100 is O(n2)  	
also O(n3)	

10n2-16n+100 ≤ 11n2 for all n ≥ 10	


10n2-16n+100 is Ω (n2)  	
also Ω (n)	

10n2-16n+100 ≥ 9n2 for all n ≥16	


Therefore also 10n2-16n+100 is Θ (n2)	

	


10n2-16n+100 is not O(n) also not Ω (n3)	
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Properties 

Transitivity.	

If f = O(g) and g = O(h) then f = O(h).	

If f = Ω(g) and g = Ω(h) then f = Ω(h). 	

If f = Θ(g) and g = Θ(h) then f = Θ(h).	


	

Additivity.	


If f = O(h) and g = O(h) then f + g = O(h). 	

If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	

If f = Θ(h) and g = O(h) then f + g = Θ(h).	
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Working with O-Ω-Θ notation 

Claim:  For any a, and any b>0,  (n+a)b is Θ(nb)	

(n+a)b ≤ (2n)b  	
for n ≥ |a|���
	
= 2bnb ���
	
= cnb 	
 	
for c = 2b ���

so (n+a)b is O(nb) ���
	


(n+a)b ≥ (n/2)b 	
for n ≥ 2|a| (even if a < 0)                              
	
= 2-bnb ���
	
= c’n 	
 	
for c’ = 2-b ���

so (n+a)b is Ω (nb)	
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Working with O-Ω-Θ notation 

Claim:  For any a, b>1   logan is Θ (logbn)	
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€ 

loga b = x means ax = b

aloga b = b

(aloga b )logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n =Θ(loga n) =Θ(logn)



Asymptotic Bounds for Some Common Functions 

Polynomials:  ���
	
a0 + a1n + … + adnd  is Θ(nd) if ad > 0���

	

Logarithms:  ���
	
O(loga n) = O(logb n) for any constants a,b > 0���
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polynomial vs exponential 

  ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	

	

	


14	


n100	

1.01n	


In short, every exponential 
grows faster than every 
polynomial!	
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polynomial vs logarithm 

Logarithms:  ���
	
For all x > 0,  (no matter how small)  log n = O(nx)	


15	


log grows slower than every polynomial	




Domination 

f(n) is o(g(n)) iff  limn→∞ f(n)/g(n)=0	

that is g(n) dominates f(n) ���
	


If a ≤ b then na is O(nb) ���
	

If a < b then na is o(nb)	

	

Note: ���
if f(n) is Θ (g(n)) then it cannot be o(g(n))	
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Working with little-o 

n2 = o(n3) [Use algebra]:	

	

	

n3 = o(en)  [Use L’Hospital’s rule 3 times]: 	
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polynomial vs exponential 

  ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	

nd = o(rn), even	
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n100	

1.01n	


In short, every exponential 
grows faster than every 
polynomial!	




Big-Theta, etc. not always “nice” 
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n, n odd
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f(n) ≠ Θ(na) for any a.!
Fortunately, such 
nasty cases are rare!

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.!



the complexity class P: polynomial time 

P: Running time O(nd) for some constant d ���
	
(d is independent of the input size n)	


Nice scaling property: there is a constant c s.t. ���
doubling n, time increases only by a factor of c. ���
	
(E.g., c ~ 2d)	


Contrast with exponential: For any constant c, 
there is a d such that n → n+d increases time 
by a factor of more than c. 	


	
(E.g., c = 100 and d = 7 for 2n vs 2n+7)	
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complexity summary 

Typical initial goal for algorithm analysis is to 
find an 	


asymptotic 	
 	
 	
	


upper bound on 	
 	
 	
 	
	

worst case running time 	

as a function of problem size	


This is rarely the last word, but often helps 
separate good algorithms from blatantly 
poor ones - concentrate on the good ones!	
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