CSE 521: Algorithms

2: Analysis

Larry Ruzzo

Our correct TSP algorithm was incredibly slow Basically slow no matter what computer you have We want a general theory of "efficiency" that is

Simple
Objective
Relatively independent of changing technology
But still predictive - "theoretically bad" algorithms should be bad in practice and vice versa (usually)

Defining Efficiency

"Runs fast on typical real problem instances"

Pro:
sensible, bottom-line-oriented

Con:
moving target (diff computers, compilers, Moore's law)
highly subjective (how fast is "fast"? What's "typical"?)

The time complexity of an algorithm associates a number $T(n)$, the worst-case time the algorithm takes, with each problem size n.

Mathematically,

$\mathrm{T}: \mathrm{N} \rightarrow \mathrm{R}$
i.e., T is a function mapping non-negative integers (problem sizes) to real numbers (number of steps).
"Reals" so we can say, e.g., sqrt(n) instead of [sqrt(n)]

computational complexity

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth rate of worst-case run time as a function of problem size, up to a constant factor, e.g. $T(n)=O\left(n^{2}\right)$

Why not try to be more precise?
Average-case, e.g., is hard to define, analyze
Technological variations (computer, compiler, OS, ...) easily 10x or more
Being more precise is a ton of work
A key question is "scale up": if I can afford this today, how much longer will it take when my business is $2 x$ larger? (E.g. today: cn^{2}, next year: $\mathrm{c}(2 \mathrm{n})^{2}=4 \mathrm{cn}^{2}: 4 \times$ longer.) Big-O analysis is adequate to address this.

computational complexity

O-notation, etc.

Given two functions f and $g: N \rightarrow R$
$f(n)$ is $O(g(n))$ iff there is a constant $c>0$ so that

$$
f(n) \text { is eventually always } \leq c g(n)
$$

$f(n)$ is $\Omega(g(n))$ iff there is a constant $c>0$ so that $f(n)$ is eventually always $\geq c g(n)$
$f(n)$ is $\Theta(g(n))$ iff there is are constants $c_{1}, c_{2}>0$ so that eventually always $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
$10 n^{2}-16 n+100$ is $O\left(n^{2}\right)$ also $O\left(n^{3}\right)$
$10 n^{2}-16 n+100 \leq 11 n^{2}$ for all $n \geq 10$
$10 n^{2}-16 \mathrm{n}+100$ is $\Omega\left(\mathrm{n}^{2}\right) \quad$ also $\Omega(\mathrm{n})$
$10 n^{2}-16 n+100 \geq 9 n^{2}$ for all $n \geq 16$
Therefore also $10 n^{2}-16 n+100$ is $\Theta\left(n^{2}\right)$
$10 n^{2}-16 n+100$ is not $O(n)$ also not $\Omega\left(n^{3}\right)$

Transitivity.
If $f=O(g)$ and $g=O(h)$ then $f=O(h)$.
If $f=\Omega(g)$ and $g=\Omega(\mathrm{h})$ then $f=\Omega(\mathrm{h})$.
If $f=\Theta(g)$ and $g=\Theta(h)$ then $f=\Theta(h)$.

Additivity.
If $f=O(h)$ and $g=O(h)$ then $f+g=O(h)$.
If $f=\Omega(\mathrm{h})$ and $\mathrm{g}=\Omega(\mathrm{h})$ then $\mathrm{f}+\mathrm{g}=\Omega(\mathrm{h})$.
If $f=\Theta(h)$ and $g=O(h)$ then $f+g=\Theta(h)$.

Working with $O-\Omega-\Theta$ notation

Claim: For any a, and any $b>0,(n+a)^{b}$ is $\Theta\left(n^{b}\right)$

$$
\begin{aligned}
& \begin{array}{l}
(n+a)^{b} \leq(2 n)^{b} \\
=2^{b} n^{b} \\
=n^{b}
\end{array} \text { for } n \geq|a| \\
& \text { so }(n+a)^{b} \text { is } O\left(n^{b}\right)
\end{aligned} \begin{aligned}
& \text { for } c=2^{b} \\
& \begin{array}{l}
(n+a)^{b} \geq(n / 2)^{b} \quad \text { for } n \geq 2|a|(\text { even if } a<0) \\
\quad=2^{-b} n^{b} \\
=c^{\prime} n \\
\text { so }(n+a)^{b} \text { is } \Omega\left(n^{b}\right)
\end{array}
\end{aligned}
$$

Working with $\mathrm{O}-\Omega-\Theta$ notation

Claim: For any $a, b>1 \quad \log _{a} n$ is $\Theta\left(\log _{b} n\right)$

$$
\begin{aligned}
& \log _{a} b=x \text { means } a^{x}=b \\
& a^{\log _{a} b}=b \\
& \left(a^{\log _{a} b}\right)^{\log _{b} n}=b^{\log _{b} n}=n \\
& \left(\log _{a} b\right)\left(\log _{b} n\right)=\log _{a} n \\
& c \log _{b} n=\log _{a} n \text { for the constant } \mathrm{c}=\log _{a} b \\
& \text { So : } \\
& \log _{b} n=\Theta\left(\log _{a} n\right)=\Theta(\log n)
\end{aligned}
$$

Asymptotic Bounds for Some Common Functions

Polynomials:

$$
a_{0}+a_{1} n+\ldots+a_{d} n^{d} \text { is } \Theta\left(n^{d}\right) \text { if } a_{d}>0
$$

Logarithms:
$O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$ for any constants $a, b>0$

polynomial vs exponential

For all $r>1$ (no matter how small) and all $d>0$, (no matter how large) $n^{d}=O\left(r^{n}\right)$

In short, every exponential grows faster than every polynomial!

polynomial vs logarithm

Logarithms:

For all $\mathrm{x}>0$, (no matter how small) $\log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$
log grows slower than every polynomial

$f(n)$ is $o(g(n))$ iff $\lim _{n \rightarrow \infty} f(n) / g(n)=0$

that is $g(n)$ dominates $f(n)$

If $\mathrm{a} \leq \mathrm{b}$ then n^{a} is $\mathrm{O}\left(\mathrm{n}^{\mathrm{b}}\right)$
If $\mathrm{a}<\mathrm{b}$ then n^{a} is $\mathrm{o}\left(\mathrm{n}^{\mathrm{b}}\right)$

Note:
if $f(n)$ is $\Theta(g(n))$ then it cannot be $o(g(n))$

Working with little-o

$n^{2}=o\left(n^{3}\right)$ [Use algebra]:

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

$$
\mathrm{n}^{3}=\mathrm{o}\left(\mathrm{e}^{\mathrm{n}}\right) \text { [Use L'Hospital's rule } 3 \text { times]: }
$$

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{n^{3}}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{3 n^{2}}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{6 n}{e^{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{6}{e^{n}}=0
$$

polynomial vs exponential

For all $r>\mid$ (no matter how small) and all $d>0$, (no matter how large) $n^{d}=O\left(r^{n}\right)$
$n^{d}=o\left(r^{n}\right)$, even

Big-Theta, etc. not always "nice"
$f(n)=\left\{\begin{array}{cc}n^{2}, & n \text { even } \\ n, & n \text { odd }\end{array}\right\}$
$f(n) \neq \Theta\left(n^{a}\right)$ for any a.
Fortunately, such nasty cases are rare

$f(n \log n) \neq \Theta\left(n^{a}\right)$ for any a, either, but at least it's simpler.
P : Running time $O\left(n^{d}\right)$ for some constant d (d is independent of the input size n)

Nice scaling property: there is a constant c s.t. doubling n , time increases only by a factor of c .
(E.g., $\mathrm{c} \sim 2^{\mathrm{d}}$)

Contrast with exponential: For any constant c, there is a d such that $n \rightarrow n+d$ increases time by a factor of more than c.

$$
\text { (E.g., } c=100 \text { and } d=7 \text { for } 2^{n} \text { vs } 2^{n+7} \text {) }
$$

Typical initial goal for algorithm analysis is to find an
asymptotic
upper bound on
worst case running time
as a function of problem size
This is rarely the last word, but often helps separate good algorithms from blatantly poor ones - concentrate on the good ones!

