
CSE 521: Algorithms

2: Analysis

Larry Ruzzo	

1	

Efficiency

Our correct TSP algorithm was incredibly slow	

Basically slow no matter what computer you have	

We want a general theory of “efficiency” that is	

Simple	

Objective	

Relatively independent of changing technology	

But still predictive – “theoretically bad” algorithms should
be bad in practice and vice versa (usually)	

2	

Defining Efficiency

“Runs fast on typical real problem instances”	

	

Pro: 	

sensible, bottom-line-oriented	

	

Con:	

moving target (diff computers, compilers, Moore’s law) 	

highly subjective (how fast is “fast”? What’s “typical”?)	

3	

computational complexity

The time complexity of an algorithm associates
a number T(n), the worst-case time the
algorithm takes, with each problem size n.	

	

Mathematically,	

T: N → R	

i.e.,T is a function mapping non-negative integers
(problem sizes) to real numbers (number of
steps).	

“Reals” so we can say, e.g., sqrt(n) instead of ⎡sqrt(n)⎤	

4	

computational complexity

Problem size !

Ti
m

e!

T(n)!

5	

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth
rate of worst-case run time as a function of problem
size, up to a constant factor, e.g. T(n) = O(n2)	

	

Why not try to be more precise?	

	

Average-case, e.g., is hard to define, analyze	

Technological variations (computer, compiler, OS, …)
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford this today, how
much longer will it take when my business is 2x larger?
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.) ���
Big-O analysis is adequate to address this.	

6	

computational complexity

7	

Problem size !

Ti
m

e!

T(n)!

2n log2n!

n log2n!

O-notation, etc.

Given two functions f and g:N→R	

f(n) is O(g(n)) iff there is a constant c>0 so that 	

	

 f(n) is eventually always ≤ c g(n)	

	

f(n) is Ω (g(n)) iff there is a constant c>0 so that 	

	

 f(n) is eventually always ≥ c g(n) 	

	

f(n) is Θ (g(n)) iff there is are constants c1, c2>0 so that ���
	

 	

 	

eventually always c1g(n) ≤ f(n) ≤ c2g(n)	

8	

Examples

10n2-16n+100 is O(n2) 	

also O(n3)	

10n2-16n+100 ≤ 11n2 for all n ≥ 10	

10n2-16n+100 is Ω (n2) 	

also Ω (n)	

10n2-16n+100 ≥ 9n2 for all n ≥16	

Therefore also 10n2-16n+100 is Θ (n2)	

	

10n2-16n+100 is not O(n) also not Ω (n3)	

9	

Properties

Transitivity.	

If f = O(g) and g = O(h) then f = O(h).	

If f = Ω(g) and g = Ω(h) then f = Ω(h). 	

If f = Θ(g) and g = Θ(h) then f = Θ(h).	

	

Additivity.	

If f = O(h) and g = O(h) then f + g = O(h). 	

If f = Ω(h) and g = Ω(h) then f + g = Ω(h).	

If f = Θ(h) and g = O(h) then f + g = Θ(h).	

10	

Working with O-Ω-Θ notation

Claim: For any a, and any b>0, (n+a)b is Θ(nb)	

(n+a)b ≤ (2n)b 	

for n ≥ |a|���
	

= 2bnb ���
	

= cnb 	

 	

for c = 2b ���

so (n+a)b is O(nb) ���
	

(n+a)b ≥ (n/2)b 	

for n ≥ 2|a| (even if a < 0)
	

= 2-bnb ���
	

= c’n 	

 	

for c’ = 2-b ���

so (n+a)b is Ω (nb)	

11	

Working with O-Ω-Θ notation

Claim: For any a, b>1 logan is Θ (logbn)	

12	

€

loga b = x means ax = b

aloga b = b

(aloga b)logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n =Θ(loga n) =Θ(logn)

Asymptotic Bounds for Some Common Functions

Polynomials: ���
	

a0 + a1n + … + adnd is Θ(nd) if ad > 0���

	

Logarithms: ���
	

O(loga n) = O(logb n) for any constants a,b > 0���

	

13	

polynomial vs exponential

 ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	

	

	

14	

n100	

1.01n	

In short, every exponential
grows faster than every
polynomial!	

0 200 400 600 800 1000

0
5

10
15

20
25

30

n

n^.50

n^.33

log(n)

1 10 100 1000

0
5

10
15

20
25

30

n (log scale)

n^.50 n^.33

log(n)

polynomial vs logarithm

Logarithms: ���
	

For all x > 0, (no matter how small) log n = O(nx)	

15	

log grows slower than every polynomial	

Domination

f(n) is o(g(n)) iff limn→∞ f(n)/g(n)=0	

that is g(n) dominates f(n) ���
	

If a ≤ b then na is O(nb) ���
	

If a < b then na is o(nb)	

	

Note: ���
if f(n) is Θ (g(n)) then it cannot be o(g(n))	

16	

Working with little-o

n2 = o(n3) [Use algebra]:	

	

	

n3 = o(en) [Use L’Hospital’s rule 3 times]: 	

	

17	

€

limn→∞

n2

n3
= limn→∞

1
n

= 0

€

limn→∞

n3

en
= limn→∞

3n2

en
= limn→∞

6n
en

= limn→∞

6
en

= 0

polynomial vs exponential

 ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)	

nd = o(rn), even	

	

18	

n100	

1.01n	

In short, every exponential
grows faster than every
polynomial!	

Big-Theta, etc. not always “nice”

19	

€

f (n) =
n2, n even
n, n odd

"

$

%
&
'

f(n) ≠ Θ(na) for any a.!
Fortunately, such
nasty cases are rare!

f(n log n) ≠ Θ(na) for any a, either, but at least it’s simpler.!

the complexity class P: polynomial time

P: Running time O(nd) for some constant d ���
	

(d is independent of the input size n)	

Nice scaling property: there is a constant c s.t. ���
doubling n, time increases only by a factor of c. ���
	

(E.g., c ~ 2d)	

Contrast with exponential: For any constant c,
there is a d such that n → n+d increases time
by a factor of more than c. 	

	

(E.g., c = 100 and d = 7 for 2n vs 2n+7)	

20	

complexity summary

Typical initial goal for algorithm analysis is to
find an 	

asymptotic 	

 	

 	

	

upper bound on 	

 	

 	

 	

	

worst case running time 	

as a function of problem size	

This is rarely the last word, but often helps
separate good algorithms from blatantly
poor ones - concentrate on the good ones!	

21	

