CSE 521: Algorithms

2: Analysis

Larry Ruzzo

Eftticiency

Our correct TSP algorithm was incredibly slow
Basically slow no matter what computer you have
We want a general theory of “efficiency” that is

Simple

Obijective

Relatively independent of changing technology

But still predictive — “theoretically bad” algorithms should
be bad in practice and vice versa (usually)

Defining Efficiency

1 . . ?)
Runs fast on typical real problem instances

Pro:

sensible, bottom-line-oriented

Con:

moving target (diff computers, compilers, Moore’s law)

y &

highly subjective (how fast is “fast’ ? What's “typical ?)

computational complexity

The time complexity of an algorithm associates
a number T(n), the worst-case time the
algorithm takes, with each problem size n.

Mathematically,
T:N—=R

i.e., T is a function mapping non-negative integers
(problem sizes) to real numbers (number of
steps).

“Reals” so we can say, e.g., sqrt(n) instead of [sqrt(n)]

computational complexity

Time

Problem size

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth
rate of worst-case run time as a function of problem
size, up to a constant factor, e.g. T(n) = O(n?)

Why not try to be more precise!

Average-case, e.g., is hard to define, analyze

Technological variations (computer, compiler, OS, ...)
easily 10x or more

Being more precise is a ton of work

A key question is “scale up”: if | can afford this today, how
much longer will it take when my business is 2x larger?
(E.g. today: cn?, next year: c(2n)? = 4cn? : 4 x longer.)
Big-O analysis is adequate to address this.

computational complexity

Time

Problem size

O-notation, etc.

Given two functions f and g:N—R

f(n) is O(g(n)) iff there is a constant c>0 so that
f(n) is eventually always < c g(n)

f(n) is €2 (g(n)) iff there is a constant ¢>0 so that
f(n) is eventually always = c g(n)

f(n) is © (g(n)) iff there is are constants c|, ¢,>0 so that
eventually always c,g(n) = f(n) < c,g(n)

Examples

10n2-16n+100 is O(n?) also O(n?)
|0n2-16n+100 < | In2foralln=10

10n%-16n+100 is Q (n?) also Q (n)
10n%-16n+100 = 9n? for alln =16
Therefore also 10n2-16n+100 is © (n?)

10n2-16n+100 is not O(n) also not Q (n3)

Properties

Transitivity.
If f = O(g) and g = O(h) then f = O(h).
If f = Q(g) and g = Q(h) then f = Q(h).
If f = O(g) and g = O(h) then f = O(h).

Additivity.
If f = O(h) and g = O(h) then f + g = O(h).
If f = Q(h) and g = Q(h) then f + g = Q(h).
If f = ©(h) and g = O(h) then f + g = O(h).

Working with O-£2-0 notation

Claim: For any a, and any b>0, (n+a)® is ©(nb)

(n+a)® < (2n)® for n = |a|
= 7bpb
= cn® for c = 2P

so (n+a)® is O(n)

(n+a)® = (n/2)® for n = 2|a| (even if a < 0)
= 7-bpb
=c'n for ¢’ =2®

so (n+a)® is Q (n®)

Working with O-£2-0 notation

Claim: For any a, b>1 log.nis © (log,n)

log,b=xmeansa =b

4% b —

(aloga b)logb n_plogn _

(log, b)(log, n)=1log_ n

clog, n =log_n for the constant ¢ =log_b
So:

log, n = 0O(log, n)=0(ogn)

Asymptotic Bounds for Some Common Functions

Polynomials:
a,+an+..+and isOnd)ifa,>0

Logarithms:
O(log, n) = O(log, n) for any constants a,b > 0

polynomial vs exponential

Forall r> | (no matter how small)
and all d > O, (no matter how large)

nd = O(r")

n

In short, every exponential
grows faster than every
polynomial!

10 15 20 25 30

5

0

polynomial vs logarithm

Logarithms:

For all x > 0, (no matter how small) log n = O(n*)

log grows slower than every polynomial

n".50

log(n)

I I I I
200 400 600 800

1000

10 15 20 25 30

5

0

n".50

Iog(rF

1 10

100

n (log scale)

1000

Domination

f(n) is o(g(n)) iff lim,__... f(n)/g(n)=0
that is g(n) dominates f(n)

If a < b then n? is O(nb)

If a < b then n? is o(n®)

Note:
if f(n) is © (g(n)) then it cannot be o(g(n))

Working with little-o

n? = o(n3) [Use algebra]:

2
n . 1
—=lm,__, —=0
n n

lim__

n3 = o(e") [Use L Hospital s rule 3 times]:

3 2
. n . 3n . on . 6
Im —=lm ——=Ilim __ —=Ilim __ —=0
—0 p n —>o0 n n—so p n—w npn
e e e e

polynomial vs exponential

Forall r> | (no matter how small)
and all d > O, (no matter how large)

nd = O(r")

nd = o(r"), even ”r
) nIOO

In short, every exponential
grows faster than every
polynomial!

)

Big-Theta, etc. not always nice’

a h

2
n°, neven

n)=- o
Jn) n, nodd

.

f(n) = ©(n?) for any a. \

Fortunately, such
nasty cases are rare

f(n log n) = ©(n?) for any a, either, but at least it's simpler.

19

the complexity class P: polynomial time

P: Running time O(n¢) for some constant d
(d is independent of the input size n)

Nice scaling property: there is a constant ¢ s.t.
doubling n, time increases only by a factor of c.
(E.g., c ~ 29)

Contrast with exponential: For any constant c,
there is a d such that n = n+d increases time

by a factor of more than c.

(E.g., c =100 and d = 7 for 2" vs 2")

20

complexity summary

Typical initial goal for algorithm analysis is to
find an

asymptotic
upper bound on
worst case running time

as a function of problem size

This is rarely the last word, but often helps
separate good algorithms from blatantly
poor ones - concentrate on the good ones!

21

