CSE 521
Design and Analysis of Algorithms |

Overview

Larry Ruzzo

P

Administrative

Course Email/BBoard
Subscription Options
Class List Archive
E-mail Course Staff
GoPost BBoard

Lecture Notes
1: Overview & Example
2: Analysis
3: Graphs, B/DFS

University of Washi

Computer Science & Engineering

CSE 521, Wi '13: Design and Analysis of Algorithms |

Lecture: MGH 271 (schematic)

Office Hours Location Phone

Instructor: Larry Ruzzo, ruzzofcs tha CSE 554 206-543-6298
TA: Cyrus Rashtchian, cyrashécs tha CSE xxx
Course Email: cse521a wil3@uw.edu. Staf - dul 51 'staff Q&A about

are subscribed to this list. Enroll~~ _..ar default subscriptio

.
Discussion Boar~- Sh.\“gtoﬂ —ueWork, etc.

Cats!~ CS .\Na‘ _.porithms: recursion, divide and conquer, balancing
_ waalysis of algorithms. NP-completeness.

h ttp.-, ,WW ~_-.u USE 326 or equivalent. CSE majors only.

~ading: Homework, Final. Overall weights 60%, 40%, roughly.

Extra Credit: Assignments may include "extra credit" sections. These will enrich your understanding of the |
them for the glory, not the points, and don't start extra credit until the basics are complete.

Collaboration: Homeworks are all individual, not group, exercises. Discussing them with others is fine, eve
homework solutions. Follow the "Gilligan's Island Rule": if you discuss the assignment with someone else,
discussion, then go watch 30+ minutes of TV (Gilligan's Island reruns especially recommended) before you
You may not look at other people's written solutions to these problems, not in your friends' notes, not in the
doubt about whether your activities cross allowable boundaries, zell us before, not after, you turn in your ass
Misconduct Policy, and the links there. 2

Textbook: Algorithm Design by Jon Kleinberg and Eva Tardos. Addison Wesley, 2006. (Available from U

What you have to do

Weekly Homework (~60% of grade)
Programming!?
perhaps some small projects

Written homework assignments
English exposition and pseudo-code
Analysis and argument as well as design

Final Exam (~40%)

Late Policy:

Papers and/or electronic turnins generally due in class;
minus 20% per day thereafter

Textbook

Algorithm Design by
Jon Kleinberg and
Eva Tardos. Addison
Wesley, 2006.

- EVA TARDOS

\
|

What the course is about

Design of Algorithms
design methods
common or important types of problems
analysis of algorithms - efficiency

correctness proofs

What the course is about

Complexity, NP-completeness and intractability

solving problems in principle is not enough

algorithms must be efficient
some problems have no efficient solution

NP-complete problems

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily

Very Rough Division of Time

Algorithms (6-7 weeks)
Analysis
Techniques: greedy, divide&conquer, dynamic programming,
Toolkit: flows & matchings, linear programming
Applications

Complexity & NP-completeness (2-3 weeks)

C heC < OoNn I INne L AL M| Computer Sciencz Engineering
schedule page for -

CSE 417, Wi '06: Approximate Schedule

lving) detail
(evolving) details — —
Week 1 M Holiday
172-1/6 .
w Intro, Examples & Complexity Ch.1;Ch. 2
F Intro, Examples & Complexity
Week2 | M Intro, Examples & Complexity
11111 I

Complexity Example

Cryptography (e.g., RSA, SSL in browsers)
Secret: p,q prime, say 512 bits each
Public: n which equals p x q, 1024 bits
In principle
there is an algorithm that given n will find p and q:
try all 2°'2 > [.3x10'>* possible p’s: kinda slow...
In practice
no fast algorithm known for this problem (on non-quantum computers)

security of RSA depends on this fact
(“quantum computing”: strongly driven by possibility of changing this)
8

Algorithms versus Machines

We all know about Moore’s Law and the
exponential improvements in hardware...

Ex: sparse linear equations over 25 years

|0 orders of magnitude improvement!

Algorithms or Hardware!

25 years
progress

solving sparse

linear
systems

hardware: 4
orders of
magnitude

Seconds

IO7§
IO6—;
IO4-;
IOZ—;

IO'-:

G.E./ CDC 3600

CDC 6600

CDC 7600

Source: Sandia, via M. Schultz

Cray 3 (Est.)

10°
1960

1
1970

1
1980

1
1990

2000

Algorithms or Hardware!

107
25 years G.E./ CDC 3600
progress ” CDC 6600
solving sparse é
“near CDC 7600
systems 10>~
hardware: 4 © o
ordersof §
magnitude o Cray 3 (Est)
Sparse G.E.
SOftware: 6 2' Gauss-Seidel
orders of 10%
magnitude _
10'-
] CG
1| Source: Sandia, via M. Schultz
109

T T T T T T T
1960 1970 1980 1990 2000

Algorithms or Hardware!

The
N-Body
Problem:

in 30 years
107 hardware
10/0 software

Log(Floats/[dynamical time] for 10 Million Particles)

20

15

10

-direct sum

-neighborhoods

treecode on cosmology problems-

tree tuned for planetesimals--

tree with planetesimal adaptive integrator-

Source: T.Quinn

| | |

tree with MVS, perturbative forces--

1970

Year

15

—y
(@

Log(Flops)

Goals

Correctness
often subtle
Analysis
often subtle
Generality, Simplicity, ‘Elegance’
Efficiency

time, memory, network bandwidth, ...

Algorithms: a sample problem

Printed circuit-board company has a robot
arm that solders components to the board

Time: proportional to total distance the arm
must move from initial rest position around

the boarc

and

back to the initial position

For each

DOaArc

the soldering

design, find best order to do

Printed Circuit Board

N\

Printed Circuit Board

A Well-defined Problem

Input: Given a set S of n points in the plane

Output: The shortest cycle tour that visits
each point in the set S.

Better known as TSP’

How might you solve it?

heuristic:

Nearest A rule of thumb,
N . h b simplification, or educated
elg or guess that reduces or limits

Heu riStiC the search for solutions in

domains that are difficult and
poorly understood. May be
Start at some point p, good, but usually not

Walk first to its guaranteed to give the best

: or fastest solution.
nearest neighbor p,

Repeatedly walk to the nearest unvisited neighbor
P,, then p;,... until all points have been visited

Then walk back to p,

Nearest Neighbor Heuristic

P+

P _.-®& - e.

lr \.\‘

/ &
) /
| K
Q Y

p6 ‘o “
~ L

An input where it works badly

20

An input where it works badly

optimal soln for this example

length = 63.8

Pr——————————————— i @) e ——l
16 4 1.9 2 8

21

Revised idea - Closest pairs first

Repeatedly join the closest pair of points ‘sf

(s.t. result can still be part of a

single loop in the end. l.e,, join ? <
endpoints, but not points in middle, ".’
of path segments already created.) l

How does this work on our bad example?

16 4 1.9 2 8

22

Another bad example

23

Another bad example

1.5 1.5

VS

D

24

Something that works

4 929
“Brute Force Search’:

For each of the n! = n(n-1)(n-2)...1 orderings of the
points, check the length of the cycle you get

Keep the best one

25

Two Notes

The two incorrect algorithms were greedy
Often very natural & tempting ideas

They make choices that look great “locally” (and never
reconsider them)

When greed works, the algorithms are typically efficient

BUT: often does not work - you get boxed in

Our correct alg avoids this, but is incredibly slow

20! is so large that checking one billion orderings per
second would take 2.4 billion seconds (around 70 years!)

And growing:n! ~ ¥ 27T n . (n/e)" ~ 20(nlogn)

26

The Morals of the Story

Algorithms are important
Many performance gains outstrip Moore’s law

Simple problems can be hard
Factoring, TSP

Simple ideas don’t always work
Nearest neighbor, closest pair heuristics

Simple algorithms can be very slow
Brute-force factoring, TSP

And: for some problems, even the best algorithms are slow

27

