*No late days may be used on this assignment*
Each problem is worth 10 points. See the website for grading guidelines.

1. Consider the problem of factoring large integers. That is, if $x$ is a positive integer, we would like to find distinct primes $p_{1}, \ldots, p_{k}$ and positive integers $a_{1}, \ldots, a_{k}$ such that $x=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. To formulate this as a yes/no question, define FACTOR to be the problem of determining, given positive integers $x$ and $t$, whether there exists an integer $y$ such that $1<y \leq t$ and $y$ divides $x$.
(a) Prove that given a black box for FACTOR, it is possible to find the prime factorization of $x$ in polynomial time. Recall that "polynomial" means "polynomial in the input length," which in this case means the number of bits required for $x$.
(b) Prove that FACTOR is in NP $\cap \mathbf{c o}$ - NP.
(c) Prove that if FACTOR is NP-complete, then $\mathbf{N P}=\mathbf{c o}-\mathbf{N P}$. Not a hint, just some motivation: Modern cryptography is based on hardness assumptions, although no one has yet successfully devised a cryptosystem that is secure assuming only $\mathbf{P} \neq \mathbf{N P}$. Instead, systems used in practice use the assumption that FACTOR is computationally hard, although the problem is considered much easier than problems such as 3-SAT.
2. KT, Chapter 8, Exercise 13
3. KT, Chapter 8, Exercise 20
4. KT, Chapter 8, Exercise 37
