due: Thursday, Dec 1. 10:30AM

Each problem is worth 10 points. "Give an algorithm" means pseudo-code, a high-level explanation and a proof of correctness. See the website for more grading guidelines.

1. Read section 7.5 of DPV and prove the equation at the bottom of page 226 . The book DPV is available online at
```
http://www.cs.berkeley.edu/ vazirani/algorithms.html
```

2. Consider the problem of writing an antivirus program that seeks to detect n different viruses. From an analysis of these viruses, you have found m code fragments that each appear in one or more viruses. For each $i \in[m]$, say that fragment i appears in viruses S_{i} for some subset $S_{i} \subseteq[n]$. However, since each fragment also may appear in legitimate code (creating false positives), we assign a cost $c_{i} \geq 0$ to each fragment.
Your goal is to choose a minimum-cost valid collection of code fragments T to search for. The cost of a collection T is defined to be $\sum_{i \in T} c_{i}$. A collection T is valid if it can identify all n viruses; i.e. if $\bigcup_{i \in T} S_{i}=[n]$. Let $O P T$ denote the minimum cost of any valid collection of code fragments.
(a) Consider the following optimization problem:

$$
\begin{array}{r}
\min \sum_{i=1}^{m} x_{i} c_{i} \\
x_{1}, \ldots, x_{m} \in\{0,1\} \\
\forall j \in[n], \sum_{i: j \in S_{i}} x_{i} \geq 1 \tag{1c}
\end{array}
$$

Prove that the solution to (1) is equal to $O P T$.
(b)

$$
\begin{array}{r}
\min \sum_{i=1}^{m} x_{i} c_{i} \\
\forall i \in[m], 0 \leq x_{i} \leq 1 \\
\forall j \in[n], \sum_{S_{i} \ni j} x_{i} \geq 1 \tag{2c}
\end{array}
$$

Denote the solution to (2) by $O P T_{L P}$. Observe that $O P T_{L P} \leq O P T$. Can any of the constraints in (2) be removed without changing the answer?
(c) Let $x \in \mathbb{R}^{n}$ be a solution to (2). Suppose that each element of $[n]$ appears in at most f subsets. Choose $T=\left\{i: x_{i} \geq 1 / f\right\}$. Prove that T is a valid collection with cost at most equal to $f \cdot O P T$.
(d) Write down the dual of (2).
(e) Again starting with a solution of (2), suppose that we take $T=\left\{i: x_{i}>0\right\}$. Prove that the cost of T is again $\leq f \cdot O P T$. Hint: Use complementary slackness.
(f) Extra credit. Consider the following alternate strategy for constructing T. For each i, put i in T with probability x_{i}.
i. What is the expected cost of this strategy?
ii. This strategy will generally not yield a valid collection. Prove that each $j \in[n]$ is covered with probability $\geq 1-1 / e$. Hint: use convexity.
iii. Suppose we repeat this strategy $\ln (n)$ times and take the union of all of the resulting collections. Prove that with constant probability this yields a valid collection that is $\leq O P T \cdot 2 \ln (n)$.
3. Given a directed graph (V, E) with edge capacities c and vertices $s, t \in V$, define FRAC-MIN-CUT to be the value of the following LP:

$$
\begin{gather*}
\min \sum_{e \in E} c(e) h(e) \tag{3a}\\
h(v \rightarrow w) \geq 0 \forall(v, w) \in E \tag{3b}\\
h(v \rightarrow w) \geq g(v)-g(w) \forall(v, w) \in E \tag{3c}\\
g(s)=1 \tag{3d}\\
g(t)=0 \tag{3e}
\end{gather*}
$$

(a) Let MIN-CUT denote the minimum cost of any s - t cut. Prove that FRAC-MIN-CUT is equal to MIN-CUT. Hint: You may use results from lecture such as LP strong duality, and the max-flow/min-cut theorem, without rederiving them.
(b) Given a solution to (3), choose a random $\theta \in[0,1]$ and set $A=\{v: g(v) \geq \theta\}$ and $B=\{v: g(v)<$ $\theta\}$. What is the expected (i.e. average) value of $\|A, B\|$? Hint: The only fact about probability that you need to know is linearity of expectation, meaning that the expectation of a sum of random variables is equal to the expectation of the sum.
(c) Show that any choice of $\theta \in(0,1)$ yields a minimum cut.

