due: Tuesday, Oct 25. 10:30AM

Each problem is worth 10 points. KT refers to Algorithm Design, First Edition, by Kleinberg and Tardos. "Give an algorithm" means pseudo-code, a high-level explanation and a proof of correctness. See the website for more grading guidelines.

1. Convergence of the gradient descent algorithm for solving $A x=b$: Consider the following algorithm:
```
Algorithm 1 Gradient descent algorithm for solving linear systems of equations
    \(k \leftarrow 0\).
    \(x_{0} \leftarrow 0\).
    repeat
        \(r_{k} \leftarrow b-A x_{k}\)
        \(\alpha_{k} \leftarrow \frac{r_{k}^{T} r_{k}}{r_{k}^{T} A r_{k}}\).
        \(x_{k+1} \leftarrow x_{k}+\alpha_{k} r_{k}\).
        \(k \leftarrow k+1\).
    until \(\left\|\alpha_{k}\right\|<10^{-20}\)
```

(a) Prove that $r_{k+1}^{T} r_{k}=0$ for all k.
(b) Define $d_{k}=A^{-1} b-x_{k}=A^{-1} r_{k}$. Define $\delta_{k}=d_{k}^{T} A d_{k}$ to be a measure of error. Prove that

$$
\delta_{k+1} \leq(1-1 / \kappa) \delta_{k} .
$$

Here $\kappa:=\|A\| \cdot\left\|A^{-1}\right\|$ is the condition number of A, and $\|M\|:=\max _{z \neq 0} \frac{z^{T} M z}{z^{T} z}$.
2. KT, Chapter 5, Problem 1
3. KT, Chapter 5, Problem 4
4. KT, Chapter 5, Problem 5
5. For two sets X, Y of integers, the Minkowski sum $X+Y$ is the set of all pairwise sums $\{x+y \mid x \in$ $X, y \in Y\}$. The goal of this problem is to compute $|X+Y|$; that is, the number of elements in $X+Y$. Let $n=|X|=|Y|$ and assume that all elements of X, Y are between 0 and M. Further assume that M is small enough so that adds, multiplies, etc of $O(\log M)$-bit numbers takes constant time.
(a) Describe an algorithm to compute $|X+Y|$ in time $O\left(n^{2} \log (n)\right)$.
(b) Describe an algorithm to compute $|X+Y|$ in time $O(M \log (M))$.
(c) For k a positive integer, define $k X=\overbrace{X+X+\cdots+X}^{k \text { times }}$. Describe an algorithm to compute $|k X|$ in time $O(k M \log (k M))$.
(d) Extra credit: Let $L=|k X|$. Describe a randomized algorithm to compute $|k X|$ with $\geq 2 / 3$ probability of success in time $O\left(L^{2} \log (L)\right)$.

