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� The process of minimizing a linear objective function 
subject to a finite number of linear equality and 
inequality constraints.

� The word “programming” is historical and predates 
computer programming.

� Example applications:
� airline crew scheduling
� manufacturing and production planning
� telecommunications network design

� “Few problems studied in computer science have 
greater application in the real world.”

Linear Programming
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Linear Programming

� Reading:
� Chapter 7 of text by Dasgupta, Papadimitriou, 

Vazirani linked in on web page. 

� “Linear Programming”, by Howard Karloff
� First 34 pages on Simplex Algorithm available through 

Google books preview

� “Linear Programming”, by Vasek Chvatal

� “Introduction to Linear Optimization”, by Dimitris
Bertsimas and John Tsitsiklis
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� A student is trying to decide on lowest cost diet that 
provides sufficient amount of protein, with two choices:
� steak: 2 units of protein/pound, $3/pound
� peanut butter: 1 unit of protein/pound, $2/pound

� In proper diet, need 4 units protein/day.
Let x = # pounds peanut butter/day in the diet.

Let y = # pounds steak/day in the diet.

Goal: minimize  2x + 3y (total cost)
subject to constraints:

x + 2y ≥≥≥≥ 4
x ≥≥≥≥ 0,  y ≥≥≥≥ 0

This is an LP- formulation 
of our problem

An Example: The Diet Problem
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An Example: The Diet Problem

� This is an optimization problem.
� Any solution meeting the nutritional demands is called 

a feasible solution
� A feasible solution of minimum cost is called the 

optimal solution.

Goal: minimize  2x + 3y (total cost)
subject to constraints:

x + 2y ≥≥≥≥ 4
x ≥≥≥≥ 0,  y ≥≥≥≥ 0
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A linear program is a problem with n variables 
x1,…,xn, that has:

1. A linear objective function, which must be
minimized/maximized. Looks like:

min (max ) c1x1+c2x2+… +cnxn

2. A set of m linear constraints. A constraint  
looks like: 

ai1x1 + ai2x2 + … + ainxn ≤≤≤≤ b i (or ≥≥≥≥ or =)

Note: the values of the coefficients c i,b i, ai,j are 
given in the problem input.

Linear Program - Definition
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Feasible Set

� Each linear inequality divides n-dimensional 
space into two halfspaces, one where the 
inequality is satisfied, and one where it’s not.

� Feasible Set : solutions to a family of linear 
inequalities.

� The linear cost functions, defines a family of 
parallel hyperplanes (lines in 2D, planes in 
3D, etc.). Want to find one of minimum cost 
� must occur at corner of feasible set.
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x+2y=4

y=0

x=0

feasible set

Visually…
x= peanut butter, y = steak
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x+2y=4

x

y

feasible set

2x+3y=6
2x+3y=0

Opt: 
x=0,
y=2

Minimal price of 
one protein unit 
= 6/4=1.5

2x+3y=15

Optimal vector occurs at some 
corner of the feasible set!
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Optimal vector occurs at some 
corner of the feasible set

x

y

feasible set

An Example 
with 6 

constraints.
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Maximize c1x1 + c2x2 +…+ cnxn

subject to Σ1≤ j ≤n aijx j ≤≤≤≤ b j i=1..m
x j ≥≥≥≥ 0 j=1..n

or
Minimize b1y1 + b2y2 +…+ bmym

subject to ΣΣΣΣ1≤i≤m aijy i ≥≥≥≥ c j j=1...n
y i ≥≥≥≥ 0 i=1..m

Standard Form of a Linear Program.
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The Feasible Set

� Intersection of a set of half-spaces, called a 
polyhedron.

� If it’s bounded and nonempty, it’s a polytope.

There are 3 cases:
� feasible set is empty.
� cost function is unbounded on feasible set.
� cost has a minimum (or maximum) on feasible 

set.
First two cases very uncommon for real problems 

in economics and engineering.
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Solving LPs

� There are several algorithms that solve any linear 
program optimally.
� The Simplex method (class of methods, usually 

very good but worst-case exponential for known 
methods)

� The Ellipsoid method (polynomial-time)
� More

� These algorithms can be implemented in various 
ways.

� There are many existing software packages for 
LP.

� It is convenient to use LP as a ``black box'' for 
solving various optimization problems.
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LP formulation: another example

Bob’s bakery sells bagel and muffins.
To bake a dozen bagels Bob needs 5 cups of 

flour, 2 eggs, and 1 cup of sugar.
To bake a dozen muffins Bob needs 4 cups of 

flour, 4 eggs and 2 cups of sugar.
Bob can sell bagels at $10/dozen and muffins at 

$12/dozen.
Bob has 50 cups of flour, 30 eggs and 20 cups 

of sugar.
How many bagels and muffins should Bob bake 

in order to maximize his revenue?
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LP formulation: Bob’s bakery

Maximize c⋅⋅⋅⋅x
s.t.    Ax ≤≤≤≤ b

x ≥≥≥≥ 0.

Bagels  Muffins
Flour 5 4
Eggs 2 4
Sugar 1 2

5   4

A =     2   4

1   2

Revenue 10 12

Avail.
50
30
20

50
30
20

b =cT = 10  12

Maximize 10x1+12x2

s.t.    5x1+4x2 ≤≤≤≤ 50
2x1+4x2 ≤≤≤≤ 30
x1+2x2 ≤≤≤≤ 20
x1 ≥≥≥≥ 0, x2 ≥≥≥≥ 0
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Example: Max Flow

Variables: f(e) - the flow on edge e.

Max ΣΣΣΣe∈∈∈∈in(t) f(e)
s.t.

f(e) ≤≤≤≤ c(e),  ∀∀∀∀e∈∈∈∈E

ΣΣΣΣe ∈∈∈∈ in(v) f(e) - ΣΣΣΣe ∈∈∈∈ out(v) f(e) = 0,    ∀∀∀∀v∈∈∈∈V-{s,t }

f(e) ≥≥≥≥ 0,   ∀∀∀∀e∈∈∈∈E
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Towards the Simplex Method

The Toy Factory Problem (TFP):
A toy factory produces dolls and cars.
Danny, a new employee, is hired. He can produce 2 cars 

and 3 dolls a day. However, the packaging machine can 
only pack 4 items a day. The company’s profit from each 
doll is $10 and from each car is $15. What should 
Danny be asked to do?

Step 1: Describe the problem as an LP problem.
Let x1,x2 denote the number of cars and dolls produced by 

Danny.
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The Toy Factory Problem

Let x1,x2 denote the number of cars and dolls produced by 
Danny.

Objective: 
Max z=15x1+10x2

s.t            x1 ≤≤≤≤ 2
x2 ≤≤≤≤ 3

x1+x2 ≤≤≤≤ 4
x1 ≥≥≥≥ 0
x2 ≥≥≥≥ 0

Feasible
region x1+x2=4

x1

x1=2

x2=3

x2
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The Toy Factory Problem

Feasible 
region

x1+x2=4

x1

x1=2

x2=3

x2 Constant profit 
lines – They are 
always parallel. 
We are looking 
for the best one 
that still 
‘touches’ the 
feasible region.

z=15

z=30 z=40
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Important Observations:

Feasible 
region

x1+x2=4

x1

x1=2

x2=3

x2

1. An optimum solution to the LP is always at a 
corner point

z=50

It might be that the 
objective line is parallel 
to a constraint. In this 
case there are many 
optimum points, in 
particular at the relevant 
corner points (consider 
z=15x1+15x2).
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Important Observations:

2. If a corner point feasible solution has an objective 
function value that is better than or equal to all its 
adjacent corner point feasible solutions then it is 
optimal.

Feasible 
region

x1+x2=4

x1

x1=2

x2=3

x2

z=50

3.  There is a finite number of 
corner point feasible solutions.

The Simplex method: Travel 
along the corner points till a 
local maximum.
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The Simplex Method

Phase 1 (start-up): Find any corner point feasible 
solution. In many standard LPs the origin can serve 
as the start-up corner point.

Phase 2 (iterate): Repeatedly move to a better 
adjacent corner point feasible solution until no 
further better adjacent corner point feasible solution 
can be found. The final corner point defines the 
optimum point.
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Example: The Toy Factory Problem

Phase 1: start at (0,0)
Objective value = Z(0,0)=0
Iteration 1: Move to (2,0).
Z(2,0)=30. An Improvement
Iteration 2: Move to (2,2)
Z(2,2)=50. An Improvement
Iteration 3: Consider moving to 

(1,3), Z(1,3)=45 < 50. 
Conclude that (2,2) is 
optimum!

Feasible 
region

x1+x2=4

x1

x1=2

x2=3

x2

(0,0) (2,0)

(2,2)

(1,3)
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Finding Corner Points Algebraically

The simplex method is easy to follow graphically. But 
how is it implemented in practice?

Notes: 
� In a corner point a subset of the inequalities are 

equations.
� It is possible to find the intersection of linear 

equations.
� We will add slack variables – to determine which 

inequality is active and which is not active
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Adding Slack Variables

Let s1,s2,s3 be the slack variables

Objective: 
Max z=15x1+10x2

s.t           x1+s1 = 2
x2 +s2 = 3

x1+x2 +s3 = 4
x1, x2, s1, s2, s3 ≥≥≥≥ 0

A corner point: Some slack variables or original 
variables are zero.

Feasible 
region x1+x2=4

x1

x1=2

x2=3

x2
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Adding Slack Variables

Feasible 
region x1+x2=4

x1

x1=2

x2=3

x2

x1=0 
x2=0

x1=0 
s2=0

s2=0 
s3=0

s1=0 
s3=0

s1=0 
x2=0

x1 + s1 = 2
x2 + s2 = 3
x1+x2 +s3 = 4
x1, x2, s1, s2, s3 ≥ 0

Moving along corner 
points: Decide 
which two variables 
are set to zero.
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The Simplex Method - Definitions

Nonbasic variable: a variable currently set to zero by 
the simplex method.

Basic variable: a variable that is not currently set to zero 
by the simplex method.

A basis: As simplex proceeds, the variables are always 
assigned to the basic set or the nonbasic set. The 
current assignment of the variables is called the 
basis.

Nonbasic, variables set to zero, corresponding 
constraint is active.
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The Simplex Method

In two adjacent cornerpoints, the nonbasic sets and the 
basic sets are identical except for one member.

Example:

Feasible 
region x1+x2=4

x1

x1=2

x2=3

x2
Nonbasic set: 
{s1,s3}

Basic set: 
{x1,x2,s2}

Nonbasic
set: {s2,s3}

Basic set: 
{x1,x2,s1}
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The Simplex Method

The process is therefore based on swapping a pair of 
variables between the basic and the nonbasic sets.

It is done in a way that best improves the objective 
function.

Example:

Feasible 
region x1+x2=4

x1

x1=2

x2=3

x2
Moving to a 
new corner 
point: x1
enters the 
basic set, s1
leaves the 
basic set

Current 
cornerpoint
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The Simplex Method – more details

Phase 1 (start-up): Initial corner point feasible solution. 

Phase 2 (iterate):

1. Can the current objective value be improved by 
swapping a basic variable? If not - stop.

2. Select entering basic variable: choose the nonbasic
variable that gives the fastest rate of increase in the 
objective function value.

3. Select the leaving basic variable by applying the 
minimum ratio test.

4. Update the equations to reflect the new basic feasible 
solution.
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The Simplex Method – example (1)

Objective: 
Max z=15x 1+10x2

s.t             x1+s1 = 2
x2 +s2 = 3

x1+x2 +s3 = 4
x1, x2, s1, s2, s3 ≥≥≥≥ 0 

Phase 2 (iterate):

1. Are we optimal? NO, z’s value can increase by 
increasing both x1 and x2. 

2. Select entering basic variable: x1 has a better ratio of 
improving the objective value (15 > 10). 

Phase 1 (start-up): Initial 
cornerpoint feasible 
solution:

x1=0, x2=0, s1=2, s2=3, 
s3=4

Nonbasic set = {x1, x2} 
Basic set = {s1 , s2, s3}
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The Simplex Method – example (2)

3. Select the leaving basic variables: The minimum ratio 
test. We ask: which constraint most limits the increase 
in the value of the entering basic variable (will first 
reduce to zero as the value of x1 increases)?

Answer: For s1 the ratio is 2/1=2, for s2 the ratio is infinite, 
for s3 the ratio is 4/1=4. s1 has the smallest ratio.

4. Update the equations to reflect the new basic feasible 
solution: x1=2, x2=0, s1=0, s2=3, s3=2. z=30.             
Nonbasic set = {s1, x2},  Basic set = {x1 , s2, s3}, 

End of iteration 1.
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The Simplex Method – example (3)

Phase 2 (iteration 2):

1. Are we optimal? NO, z’s value can increase by increasing 
the values of x2. 

2. Select entering basic variable: the only candidate is x2. 
3. Select the leaving basic variables: The minimum ratio test. 

For x1 the ratio is infinite, for s2 the ratio is 3/1=3, for s3
the ratio is 2/1=2. s3 has the smallest ratio.

4. Update the equations to reflect the new basic feasible 
solution: x1=2, x2=2, s1=0, s2=1, s3=0. z=50.         
Nonbasic set = {s1, s3},  Basic set = {x1 , s2, x3}, 

End of iteration 2.
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The Simplex Method – example (4)

Phase 2 (iteration 3):

1. Are we optimal? YES, z’s value cannot increase by 
increasing the value of either s1 or s3. 

End of example.

Remarks:

There is a quick way (The Simplex tableau) to find out the 
variable to enter and the variable to leave the basis.

In case of a tie, both directions are ok, there is no heuristic 
to determine which will end up first.
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Simplex Algorithm: 
An Example in 3D

Maximize 5x + 4y + 3z
subject to 2x+ 3y + z ≤≤≤≤ 5

4x + y + 2z ≤≤≤≤ 11
3x + 4y + 2z ≤≤≤≤ 8
x,y,z ≥≥≥≥ 0.
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Simplex Algorithm: An Example in 3D

Maximize 5x + 4y + 3z
subject to  2x + 3y + z ≤ 5

4x + y + 2z  ≤ 11
3x + 4y + 2z ≤ 8

x,y,z ≥0.

Step 0: convert inequalities into equalities by 
introducing slack variables a,b,c .

Define:   a = 5-2x-3y-z ⇒ a ≥ 0
b = 11-4x-y-2z ⇒ b ≥ 0
c =  8-3x-4y-2z ⇒ c ≥ 0
F = 5x+4y + 3z,   objective function
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Example of Simplex Method, 
continued.

Step 1: Find initial feasible solution:

x=0,y=0,z=0 ⇒ a=5, b=11, c=8 ⇒ F=0.
Step 2: Find feasible solution with higher value of F
For example, can increase x to get F=5x.

How much can we increase x?
a = 5-2x-3y-z ≥ 0 ⇒ x ≤ 5/2 most stringent
b = 11-4x-y-2z ≥ 0 ⇒ x ≤ 11/4
c =  8-3x-4y-2z ≥ 0 ⇒ x ≤ 8/3

⇒ increase x to 5/2 ⇒ F= 25/2,  a=0, b=1, c=1/2
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Example of Simplex Method, 
continued.

Want to keep doing this, need to get back into state 
where x,b,c on l.h.s. of equations.

a = 5-2x-3y-z ⇒ x= 5/2 - 3/2 y - 1/2 z - 1/2  a (*)

Substituting (*) into other equations:
b = 11-4x-y-2z ≥ 0 ⇒ b = 1 + 5y + 2a
c =  8-3x-4y-2z ≥ 0 ⇒ c = 1/2 + 1/2 y -1/2 z + 3/2 a
F = 5x+4y + 3z ⇒ F= 25/2 - 7/2 y + 1/2 z - 5/2 a

In order to increase F again, should increase z
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Example of Simplex Method, 
continued.

How much can we increase z?

x = 5/2 - 3/2 y -1/2 z - 1/2  a ⇒ z ≤ 5
b = 1 + 5y + 2a ⇒ no restriction
c = 1/2 + 1/2 y -1/2 z + 3/2 a ⇒ z ≤ 1 most stringent (^)

Setting z = 1 yields
x=2, y=0, z=1, a=0, b = 1, c = 0.           

F= 25/2 - 7/2 y + 1/2 z - 5/2 a ⇒ F= 13.

Again, construct system of equations.
From (^)     z = 1 + y + 3a - 2c.
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Example of Simplex Method, 
continued.

Substituting back into other equations:
z = 1 + y + 3a - 2c.

x = 5/2 - 3/2 y -1/2 z - 1/2  a ⇒ x = 2-2y-2a + c
b = 1 + 5y + 2a ⇒ b =  1 + 5y + 2a
F = 25/2 - 7/2 y + 1/2 z - 5/2 a ⇒ F = 13 - 3y -a - c

And we’re done.
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A Central Result of LP Theory:
Duality Theorem

� Every linear program has a dual
� If the original is a minimization, the dual is a 

maximization and vice versa
� Solution of one leads to solution of other
Primal: Maximize  cTx subject to Ax ≤ b,  x ≥ 0
Dual: Minimize  bTy subject to ATy ≥ c,  y ≥ 0

If one has optimal solution so does the other, and 
their values are the same.
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Proof of Weak Duality

� Suppose that 
� x satisfies Ax ≤ b,  x ≥ 0
� y satisfies ATy ≥ c,  y ≥ 0

� Then 
� cTx ≤ (ATy)T x    since x ≥ 0 and ATy ≥ c

=  yT A x        by definition
≤ yTb since y ≥ 0 and Ax ≤ b
= bTy by definition

� This says that any feasible solution to the primal 
(maximization problem) has an objective function 
value at most that of any feasible solution of the dual 
(minimization) problem. 

� Strong duality says that the optima of the two are 
equal
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Primal: Maximize  cTx subject to A x ≤ b,  x ≥≥≥≥ 0

Dual: Minimize  bTy subject to A Ty ≥ c,  y ≥≥≥≥ 0

� In the primal, c is cost function and b was in 
the constraint. In the dual, reversed.

� Inequality sign is changed and minimization 
turns to maximization.

Primal:
maximize 2x + 3y

s.t x+2y ≤ 4,  
2x + 5y≤ 1, 
x - 3y ≤ 2,  
x ≥ 0, y ≥ 0

Dual:

minimize  4p +q + 2r    s.t

p+2q + r ≥ 2, 

2p+5q -3r ≥ 3,  

p,q,r ≥ 0
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Simple Example

� Diet problem:  minimize 2x + 3y
subject to x+2y ≥ 4,  

x ≥ 0, y ≥ 0
� Dual problem: maximize 4p

subject to   p ≤ 2, 
2p ≤ 3, 
p ≥ 0

� Dual: the problem faced by a druggist who sells 
synthetic protein, trying to compete with peanut 
butter and steak
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Simple Example

� The druggist wants to maximize the price p, 
subject to constraints:
� synthetic protein must not cost more than protein 

available in foods.
� price must be non-negative or he won’t sell any
� revenue to druggist will be 4p

� Solution:  p ≤ 3/2  � objective value = 4p = 6
� Not coincidence that it’s equal the minimal cost in 

original problem.  
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What’s going on?

� Notice: feasible sets completely different for primal 
and dual, but nonetheless an important relation 
between them.

� Duality theorem says that in the competition between 
the grocer and the druggist the result is always a tie.

� Optimal solution to primal tells purchaser what to do.
� Optimal solution to dual fixes the natural prices at 

which economy should run.
� The diet x and vitamin prices y are optimal when

� grocer sells zero of any food that is priced above its vitamin 
equivalent.

� druggist charges 0 for any vitamin that is oversupplied in the 
diet.
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Duality Theorem

Druggist’s max revenue = Purchasers min cost

Practical Use of Duality:
� Sometimes simplex algorithm (or other 

algorithms) will run faster on the dual than on 
the primal.

� Can be used to bound how far you are from 
optimal solution.

� Important implications for economists.
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Example: Max Flow

Variables: fuv - the flow on edge e=(u,v).

Max ΣΣΣΣu fsu

s.t.

fuv ≤≤≤≤ cuv,  ∀∀∀∀(u,v)∈∈∈∈E

ΣΣΣΣu fuv - ΣΣΣΣw fvw = 0,    ∀∀∀∀v∈∈∈∈V-{s,t }

fuv ≥≥≥≥ 0,   ∀∀∀∀(u,v)∈∈∈∈E

huv

Dual variables

gv
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Dual to: Max Flow

Variables: gv, huv - the flow on edge e=(u,v)

Min ΣΣΣΣuv cuv huv

s.t.

hsv + gv ≥≥≥≥ 1,   ∀∀∀∀v∈∈∈∈V-s
huv +gv– gu ≥≥≥≥ 0, ∀∀∀∀u,v∈∈∈∈V-{s,t }

hut– gu ≥≥≥≥ 0,   ∀∀∀∀u∈∈∈∈V-t
huv ≥≥≥≥ 0,         ∀∀∀∀(u,v)∈∈∈∈E

Dual Solution:  Given st -cut (S,T) with S=s ∪∪∪∪A
Set gv=1 for v∊∊∊∊AAAA and ggggvvvv=0=0=0=0 otherwise
Set hhhhuvuvuvuv=1=1=1=1 for uuuu∊∊∊∊AAAA and vvvv not in A
Set hhhhuvuvuvuv=0=0=0=0 otherwise
Value is exactly the value of the cut

WLOG at minmum
huv=max(gu-gv,0)

for u,v≠s,t
hut=max(gu,0) 
hsv=max(1-gv,0)
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Properties of LP optima

Maximize c1x1 + c2x2 +…+ cnxn

subject to
a11x1 + a12x2 +…+ a1nxn ≤≤≤≤ b1

a21x1 + a22x2 +…+ a2nxn ≤≤≤≤ b2

…
am1x1+ am2x2 +…+ amnxn ≤≤≤≤ bm

-x1                                             ≤≤≤≤ 0
-x2                            ≤≤≤≤ 0

…
-xn ≤≤≤≤ 0

A
-I

x≤
b
0
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Properties of LP optima

� Every corner point x* of the feasible region                    
Ax ≤ b,  x ≥ 0 satisfies:  
� Āx*=b’ where Ā and b’ are some subset of n rows of [A|-I]

and [b|0] that yield an invertible square submatrix.  

� Now x*=Ā-1b’ and Ā-1 = adj(Ā)/det(Ā) where adj(Ā)ij is 
the determinant of a submatrix of Ā
� Implies that if A,b are integers then every corner point has 

rational coordinates

� Def: A is totally unimodular iff every square submatrix
of A has determinant +1,0, or -1
� det(Ā)=±det(A’ ) where A’ is a submatrix of A
� So if A is totally unimodular then all corner points have 

integer coordinates



52

Minimum Cost Perfect Matching

� Given two sets of vertices U,V with |U|=|V|
and a cost cuv≥≥≥≥ 0 for each pair/edge, find a 
perfect matching between U and V of 
minimum total cost

� LP: variables xuv

Minimize Σuv cuv xuv s.t.

Σv xuv ≥≥≥≥ 1

Σu xuv ≥≥≥≥ 1
xuv ≥≥≥≥ 0

� Note: No need to say that xuv ≤ 1 since any solution 
with an  xuv >1 can be reduced to xuv=1 and get a 
smaller objective function value since cuv≥≥≥≥ 0
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Incidence Matrix of a Bipartite Graph 
is Totally Unimodular

Matrix is

Induction on size of submatrix: m=1 True
� Square submatrix has a 0 column

� Determinant=0 True
� Square submatrix of size m has one 1 in some column

� Expanding along the column gives +1 or -1 times 
Determinant of size m-1 square submatrix.
True by I.H.

� Square submatrix has two 1’s in every column
� Sum rows in U = sum of rows in V
� Rows are linearly dependent so Determinant=0

True

U

V

E
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Minimum Cost Perfect Matching

� Given two sets of vertices U,V with |U|=|V|
and a cost cuv≥≥≥≥ 0 for each pair/edge, find a 
perfect matching between U and V of 
minimum total cost

� LP: variables xuv

Minimize Σuv cuv xuv s.t.

Σv xuv ≥≥≥≥ 1

Σu xuv ≥≥≥≥ 1
xuv ≥≥≥≥ 0

� Note: No need to say that xuv ≤ 1 since any solution 
with an  xuv >1 can be reduced to xuv=1 and get a 
smaller objective function value since cuv≥≥≥≥ 0

Dual variables
pu

pv
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Minimum Cost Perfect Matching

� Dual LP: variables pu,pv

Maximize Σu pu+ Σv pv s.t.

pu +pv ≤ cuv

pu,pv ≥≥≥≥ 0
� Think of pu and pv as prices that the 

endpoints can charge for participating in the 
matching

� In optimal solution for both Primal and Dual 
the budget exactly balances.
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Primal-Dual Algorithms

� Sometimes one can cleverly work with 
both primal and dual to get an efficient 
algorithm that is purely combinatorial
� e.g. Min-cost perfect matching from 

Section 7.13 of the K&T text
� Repeatedly select cheapest augmenting 

path where notion of ‘cheapest’ depends 
on current values of prices from the dual 
for the maxflow version of the problem, 
i.e. the  gu,gv values, update prices
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Primal-Dual Algorithm for Min-cost 
Perfect Matching

� Maintain residual graph as in usual reduction to 
maxflow

� Start with all fuv=0, pu=0 and pv= min u cuv
� Maintain modified costs čuv = cuv – pu – pv ≥ 0

� Matched edges uv will have čuv = 0
� Find shortest st -path in residual using modified cost 

as measure of distance (other edges have length 0)
� If shortest path has length 0 then augment flow along path to 

increase size of matching
� If shortest path has length >0 then only its last edge ab in 

bipartite graph will have čab > 0
� Add čab to pu on all u∈U reachable by paths of length 0
� Add -čab to pv on all v∈V reachable by paths of length 0

� Need to argue that this keeps prices ≥ 0
� Path will now have length 0 and set of edges uv with       
čuv =0 will strictly increase to include ab
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Ellipsoid Algorithm

� Running time is polynomial but depends on the # of 
bits L needed to represent numbers in A, b, and c
� Like capacity-scaling for network flow but a much bigger 

polynomial
� Interior point methods running times also depend on L

� Method applies to large class of convex programs
� Can be efficient for LPs with exponentially many constraints

� Open whether a strongly polynomial-time algorithm 
exists for LP
� One where running time has # of operations polynomial in 

just m and n
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Integer Programming (IP)

� An LP problem with an additional requirement 
that variables will only get an integral value, 
maybe from some range.

� 01P – binary integer programming: variables 
should be assigned only 0 or 1.

� Can model many problems.
� NP-hard to solve!
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01P Example: Vertex Cover

Variables: for each v∈V, xv – is v in the cover?
Minimize ΣΣΣΣvxv

Subject to: xv ∈ {0,1}
xu + xv ≥≥≥≥ 1 ∀(u,v)∈ E
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01P Example:  Weighted Set Cover

Input: a Collection S1, S2,…,Sn of subsets of 
{1,2,3,…,m} a cost p i for set Si.

Output: A collection of subsets whose union is 
{1,2,…,m}.

Objective: Minimum total cost of selected subsets.

Variables: For each subset, x i – is subset Si selected for 
the cover?

Minimize ∑∑∑∑i p i·xi

Subject to: x i∈ {0,1}n

∑∑∑∑ j∈∈∈∈ Si x i ≥≥≥≥ 1    ∀∀∀∀j=1..m
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01P Example: Shortest Path

Given a directed graph G(V,E), s,t ∈ V and length 
pe for edge e.

Variables: For each edge, xe – is e in the path?

Minimize ∑∑∑∑e pe xe

Subject to: xe∈ {0,1}     ∀e ∈ E
∑∑∑∑ e∈∈∈∈ A xe ≥ 1 ∀∀∀∀s→→→→t cut A s

t

A
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LP-based approximations

� We don’t know any polynomial-time algorithm 
for any NP-complete problem

� We know how to solve LP in polynomial time
� We will see that LP can be used to get 

approximate solutions to some NP-complete 
problems.
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Weighted Vertex Cover

Input: Graph G=(V,E) with non-negative weights 
wv on the vertices.

Goal: Find a minimum-cost set of vertices S, 
such that all the edges are covered. An edge 
is covered iff at least one of its endpoints is in 
S.

Recall: Weighted Vertex Cover is NP-complete. 
The best known approximation factor is     
2- 1/sqrt(log|V|).
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Weighted Vertex Cover

Variables: for each v∈V, xv – is v in the cover?

Min ΣΣΣΣv∈∈∈∈V wvxv

s.t.

xv + xu ≥≥≥≥ 1,  ∀(u,v)∈E

xv ∈∈∈∈ {0,1}   ∀v∈∈∈∈V
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The LP Relaxation

This is not a linear program: the constraints of type

xv ∈ {0,1} are not linear. We got an LP with integrality 
constraints on variables – an integer linear program 
(IP) that is NP-hard to solve.

However, if we replace the constraints xv ∈ {0,1}
by xv ≥≥≥≥ 0 and xv ≤≤≤≤ 1, we will get a linear program.

The resulting LP is called a Linear Relaxation of the
IP, since we relax the integrality constraints.
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LP Relaxation of Weighted Vertex 
Cover

Min ΣΣΣΣv∈∈∈∈V wvxv

s.t.

xv + xu ≥≥≥≥ 1,  ∀(u,v)∈∈∈∈E

xv ≥≥≥≥ 0,  ∀v∈∈∈∈V
xv ≤≤≤≤ 1,  ∀v∈∈∈∈V
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LP Relaxation of Weighted Vertex 
Cover - example

Consider the case of a 3-cycle in 
which all weights are 1.

An optimal VC has cost 2 (any two 
vertices)

An optimal relaxation has cost 3/2 (for 
all three vertices xv=1/2) 

½

½

½
The LP and the IP are different 
problems. Can we still learn 
something about Integral VC?
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Why LP Relaxation Is Useful ? 

The optimal value of LP-solution provides a 
bound on the optimal value of the original 
optimization problem. OPTLP is always better 
than OPTIP (why?)

Therefore, if we find an integral solution within a 
factor r of OPTLP, it is also an r-approximation of 
the original problem.

It can be done by ‘wise’ rounding.



70

Approximation of Weighted Vertex 
Cover Using LP-Rounding

1. Solve the LP-Relaxation.

2. Let S be the set of all the vertices v with xv ≥ 1/2.    
Output S as the solution.

Analysis: The solution is feasible: for each edge e=(u,v),
either xv ≥≥≥≥ 1/2 or xu ≥ 1/2

The value of the solution is: ΣΣΣΣv∈∈∈∈s wv = ΣΣΣΣ{v| x v ≥≥≥≥1/2} wv

≤ 2 ΣΣΣΣv∈∈∈∈V wvxv =2 OPTLP

Since OPTLP ≤≤≤≤ OPTVC, the cost of the solution is                
≤≤≤≤ 2 OPTVC.



71

Linear Programming -Summary

� Of great practical importance to solve linear 
programs:
� they model important practical problems

� production, approximating the solution of 
inconsistent equations, manufacturing, 
network design, flow control, resource 
allocation.

� solving an LP is often an important component of 
solving or approximating the solution to an 
integer linear programming problem.

� Can be solved in poly-time, but the simplex 
algorithm works very well in practice. 

� One problem where you really do not want to 
roll your own code.


