

Finding a hole in a fence

- You're standing in front of a long fence. There is a hole somewhere, but you don't know where it is.
- Each period, you can take a step left or a step right.
- Your goal is to find the hole with the fewest number of steps.

	Finding a hole in a fence
- You're standing in front of a long fence.	
There is a hole somewhere, but you	
don't know where it is.	
- Each period, you can take a step left or	
a step right.	
- Your goal is to find the hole with the	
fewest number of steps.	

Online algorithms

- Making decisions under uncertainty - Many ways to analyze.
- Competitive analysis: worst case ratio of performance of online algorithm to performance of optimal with hindsight.
- Regret: worst case difference in performance.

Ski Rental

- Renting skis costs \$50
- Buying skis costs \$500
- What should you do? Rent or buy?
- If you knew the future...

List update

- Maintain a linked list of n items (numbered 1..n)
- Perform a sequence of lookups, each one takes time = position of element in list.
- Rule *: After a lookup, requested item may be put anywhere in the list between the start and its position before the lookup.
- Additional swaps cost 1 each.
- Have to make decisions online. \qquad

A good algorithm: Move to Front

- Always move requested item to front of list.
- Theorem: MTF has competitive ratio 2.
- Proof:
- Rule * \rightarrow Rule **: After a request required to move the requested element to front.
- Can simulate an algorithm with cost C under rule * by an algorithm with cost at most 2C under rule **.
- With Rule **, MTF is optimal.

Online learning and Multiplicative Weights Update Method

- Method has been used in many variants over the years
- From a recent survey by Arora, Hazan, Kale:
- This "meta algorithm and its analysis are simple and useful enough that they should be viewed as a basic tool taught to all algorithms students together with divide-and-conquer, dynamic programming, random sampling, and the like."
- http://www.cs.princeton.edu/~satyen/papers/mw-survey.pdf

Online choice from experts

- Simple case: Stock market direction
- n experts
- every day each expert i makes a binary guess/ prediction (up=+1 or down=-1)
- at end of the day can observe the outcome of what the market did that day
- Goal: Is there a strategy that allows us to do nearly as well as the best of these experts in hindsight?

Simpler question

- n experts
- every day each expert i makes a binary guess/ prediction (up=+1 or down=-1)
- at end of the day can observe the outcome of what the market did that day
- One of them is perfect - never makes a mistake. We just don't know which one.
- Goal: Can we find a strategy that makes no more than $\lg (\mathrm{n})$ mistakes?

What if no expert is perfect?

- Intuition: making a mistake doesn't completely disquality an expert. So, instead of crossing off, just lower its weight.
- Weighted majority algorithm:
- Start with all experts having weight 1.
- Predict based on majority vote.
- Penalize mistakes by cutting weight in half.
- Claim: do nearly as well as best expert in hindsight.
- Can use this to combine multiple algs to do nearly as well as best in hindsight.

