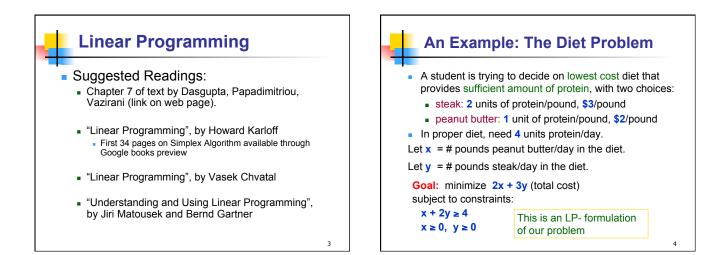


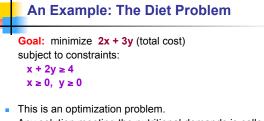
Linear Programming

- The process of minimizing a linear objective function subject to a finite number of linear equality and inequality constraints.
- The word "programming" is historical and predates computer programming.
- Example applications:
 - airline crew scheduling
 - manufacturing and production planning
 - telecommunications network design
- "Few problems studied in computer science have greater application in the real world."

2



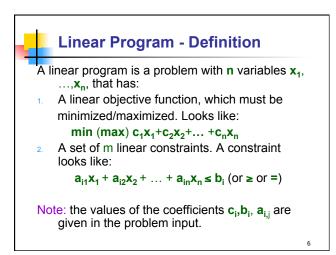
1

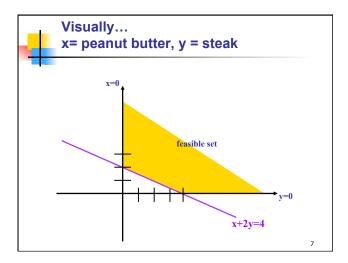


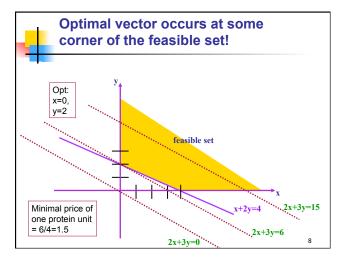
• Any solution meeting the nutritional demands is called a *feasible solution*

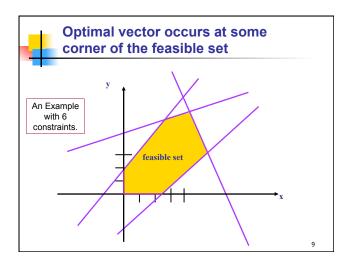
5

• A feasible solution of minimum cost is called the optimal solution.

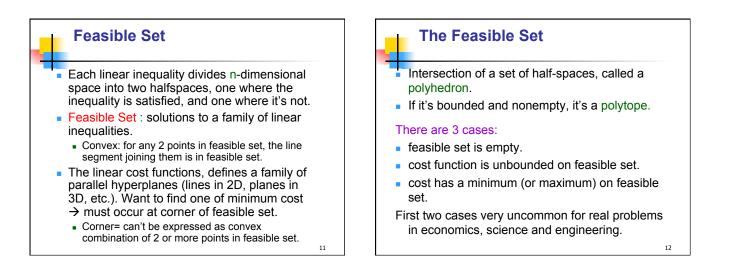








_	
Standard Form of a Linear Progra	am.
Maximize $c_1x_1 + c_2x_2 + + c_nx_n$ subject to $\sum_{1 \le j \le n} a_{ij}x_j \le b_j$ i=1m $x_j \ge 0$ j=1n	
Minimize $b_1y_1 + b_2y_2 + + b_my_m$ subject to $\sum_{1 \le i \le m} a_{ij}y_i \ge c_j \qquad j=1n$ $y_i \ge 0 \qquad i=1m$	
	10



Solving LPs

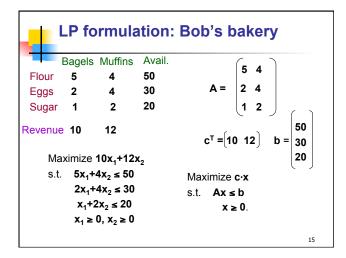
- There are several algorithms that solve any linear program optimally.
 - The Simplex method (class of methods, usually very good but worst-case exponential for known methods)
 - > The Ellipsoid method (polynomial-time)
 - More
- These algorithms can be implemented in various ways.
- There are many existing software packages for LP.
- It is convenient to use LP as a ``black box" for solving various optimization problems.

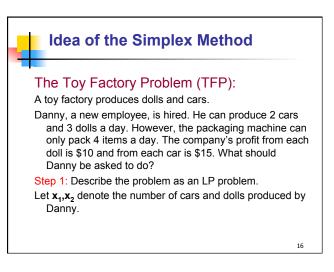
13

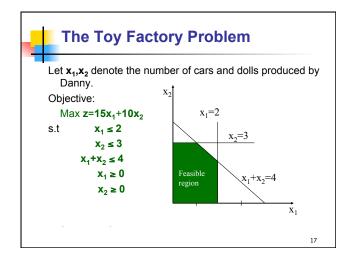
LP formulation: another example

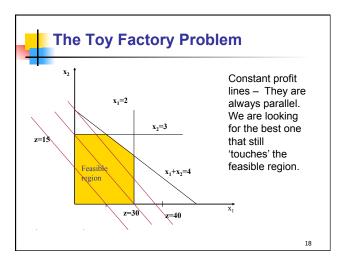
Bob's bakery sells bagel and muffins.

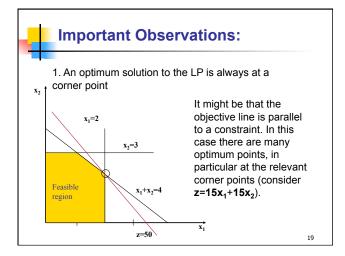
- To bake a dozen bagels Bob needs 5 cups of flour, 2 eggs, and 1 cup of sugar.
- To bake a dozen muffins Bob needs 4 cups of flour, 4 eggs and 2 cups of sugar.
- Bob can sell bagels at **\$10**/dozen and muffins at **\$12**/dozen.
- Bob has 50 cups of flour, 30 eggs and 20 cups of sugar.
- How many bagels and muffins should Bob bake in order to maximize his revenue?











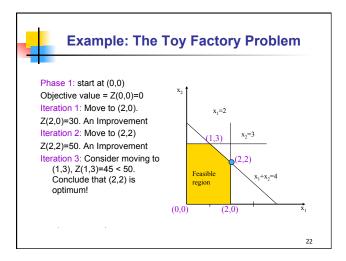


Phase 1 (start-up): Find any corner point feasible solution. In many standard LPs the origin can serve as the start-up corner point.

Phase 2 (iterate): Repeatedly move to a better adjacent corner point feasible solution until no further better adjacent corner point feasible solution can be found. The final corner point defines the optimum point.

21

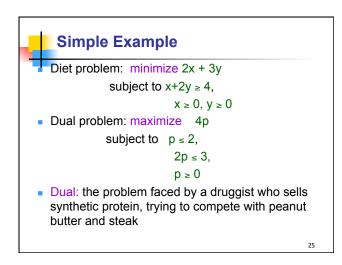
23

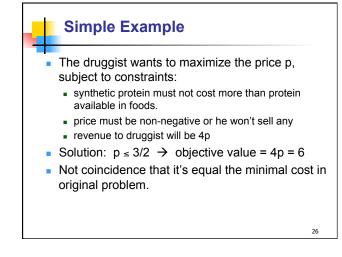


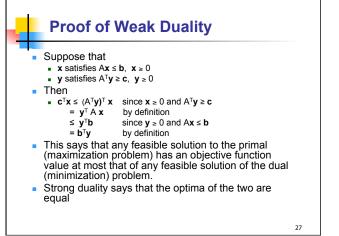
A Central Result of LP Theory: Duality Theorem

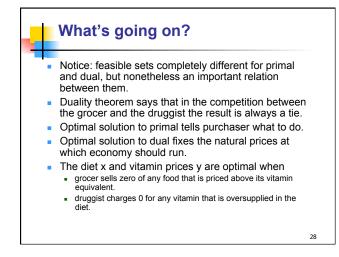
- Every linear program has a dual
- If the original is a minimization, the dual is a maximization and vice versa
- Solution of one leads to solution of other
- **Primal:** Maximize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $\mathbf{A}\mathbf{x} \le \mathbf{b}$, $\mathbf{x} \ge 0$
- **Dual:** Minimize $\mathbf{b}^T \mathbf{y}$ subject to $\mathbf{A}^T \mathbf{y} \ge \mathbf{c}$, $\mathbf{y} \ge 0$
- If one has optimal solution so does the other, and their values are the same.

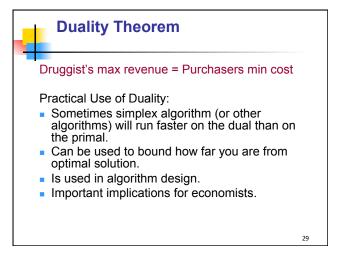
	c^Tx subject to Ax ≤ b, x ≥ 0 Ty subject to A ^T y ≥ c, y ≥ 0	
 In the primal, c is cost function and b was in the constraint. In the dual, reversed. Inequality sign is changed and minimization turns to maximization. 		
Primal: maximize $2x + 3y$ s.t $x+2y \le 4$, $2x + 5y \le 1$, $x - 3y \le 2$, $x \ge 0, y \ge 0$	Dual: minimize $4p + q + 2r$ s.t $p+2q + r \ge 2$, $2p+5q - 3r \ge 3$, $p,q,r \ge 0$	
	24	



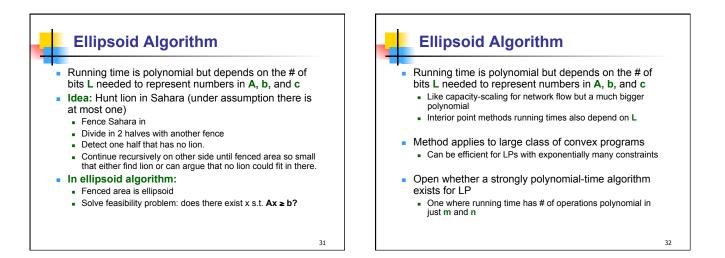








Example: Max Flow Variables: f_{uv} - the flow on edge e=(u,v). $Max \ \Sigma_u \ f_{su}$ s.t. $f_{uv} \le c_{uv}, \ \forall (u,v) \in E$ $\Sigma_u \ f_{uv} - \Sigma_w \ f_{vw} = 0, \quad \forall v \in V - \{s,t\}$ $f_{uv} \ge 0, \quad \forall (u,v) \in E$ 30



- An LP problem with an additional requirement that variables will only get an integral value, maybe from some range.
- 01P binary integer programming: variables should be assigned only 0 or 1.
- Can model many problems.
- NP-hard to solve!

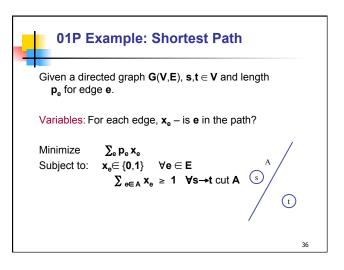
33

01P Example: Vertex Cover

Variables: for each v \in V, x_v – is v in the cover? Minimize $\Sigma_v x_v$ Subject to: $x_v \in \{0,1\}$ $x_u + x_v \ge 1 \quad \forall (u,v) \in E$

34

OPE CAMPALE: Weighted Set Cover Input: a Collection S₁, S₂,...,S_n of subsets of {1,2,3, ...,m} a cost p₁ for set S₁. Output: A collection of subsets whose union is {1,2, ...,m}. Objective: Minimum total cost of selected subsets. Variables: For each subset, x₁ – is subset S₁ selected for the cover? Minimize $\sum_{i} p_i \cdot x_i$ Subject to: $x_i \in \{0,1\}^n$ $\sum_{j \in Si} x_i \ge 1$ $\forall j = 1...m$



- We don't know any polynomial-time algorithm for any NP-complete problem
- We know how to solve LP in polynomial time
- We will see that LP can be used to get approximate solutions to some NP-complete problems.

37

39

Weighted Vertex Cover

Input: Graph G=(V,E) with non-negative weights w_v on the vertices.

Goal: Find a minimum-cost set of vertices S, such that all the edges are covered. An edge is covered iff at least one of its endpoints is in **S**.

Recall: Weighted Vertex Cover is NP-complete. The best known approximation factor is 2- 1/sqrt(log|**V**|).

38

Weighted Vertex CoverVariables: for each $v \in V$, $x_v - is v$ in the cover?Min $\Sigma_{v \in V} w_v x_v$
s.t.
 $x_v + x_u \ge 1$, $\forall (u,v) \in E$
 $x_v \in \{0,1\} \quad \forall v \in V$

