

An Example: The Diet Problem

- A student is trying to decide on lowest cost diet that provides sufficient amount of protein, with two choices:
- steak: 2 units of protein/pound, \$3/pound
- peanut butter: 1 unit of protein/pound, $\$ 2 /$ pound
- In proper diet, need 4 units protein/day.

Let $\mathbf{x}=$ \# pounds peanut butter/day in the diet.
Let $\mathbf{y}=\#$ pounds steak/day in the diet.
Goal: minimize $2 x+3 y$ (total cost) subject to constraints:

$$
\begin{array}{ll}
x+2 y \geq 4 & \text { This is an LP- formulation } \\
x \geq 0, y \geq 0 & \text { of our problem }
\end{array}
$$

An Example: The Diet Problem

Goal: minimize $2 x+3 y$ (total cost)
subject to constraints:
$x+2 y \geq 4$
$x \geq 0, y \geq 0$

- This is an optimization problem.
- Any solution meeting the nutritional demands is called a feasible solution
- A feasible solution of minimum cost is called the optimal solution.

Feasible Set

- Each linear inequality divides n-dimensional space into two halfspaces, one where the inequality is satisfied, and one where it's not.
- Feasible Set : solutions to a family of linear inequalities.
- Convex: for any 2 points in feasible set, the line segment joining them is in feasible set.
- The linear cost functions, defines a family of parallel hyperplanes (lines in 2D, planes in $3 D$, etc.). Want to find one of minimum cost \rightarrow must occur at corner of feasible set.
- Corner= can't be expressed as convex combination of 2 or more points in feasible set.

The Feasible Set

- Intersection of a set of half-spaces, called a polyhedron.
- If it's bounded and nonempty, it's a polytope.

There are 3 cases:

- feasible set is empty.
- cost function is unbounded on feasible set.
- cost has a minimum (or maximum) on feasible set.
First two cases very uncommon for real problems in economics, science and engineering.

Solving LPs

- There are several algorithms that solve any linear program optimally.
- The Simplex method (class of methods, usually very good but worst-case exponential for known methods)
, The Ellipsoid method (polynomial-time)
- More
- These algorithms can be implemented in various ways.
- There are many existing software packages for LP.
- It is convenient to use LP as a "black box" for solving various optimization problems.

LP formulation: another example

Bob's bakery sells bagel and muffins.
To bake a dozen bagels Bob needs 5 cups of flour, 2 eggs, and 1 cup of sugar.
To bake a dozen muffins Bob needs 4 cups of flour, 4 eggs and 2 cups of sugar.
Bob can sell bagels at $\$ 10 /$ dozen and muffins at \$12/dozen.
Bob has 50 cups of flour, 30 eggs and 20 cups of sugar.
How many bagels and muffins should Bob bake in order to maximize his revenue?

Idea of the Simplex Method

 -The Toy Factory Problem (TFP):
A toy factory produces dolls and cars.
Danny, a new employee, is hired. He can produce 2 cars and 3 dolls a day. However, the packaging machine can only pack 4 items a day. The company's profit from each doll is $\$ 10$ and from each car is $\$ 15$. What should Danny be asked to do?
Step 1: Describe the problem as an LP problem.
Let $\mathbf{x}_{1}, \mathbf{x}_{2}$ denote the number of cars and dolls produced by Danny.

A Central Result of LP Theory: Duality Theorem

- Every linear program has a dual
- If the original is a minimization, the dual is a maximization and vice versa
- Solution of one leads to solution of other

Primal: Maximize $\mathbf{c}^{\boldsymbol{T}} \mathbf{x}$ subject to $\mathbf{A x} \leq \mathbf{b}, \mathbf{x} \geq 0$
Dual: Minimize $\mathbf{b}^{\top} \mathbf{y}$ subject to $\mathbf{A}^{\top} \mathbf{y} \geq \mathbf{c}, \mathbf{y} \geq 0$
If one has optimal solution so does the other, and their values are the same.

Simple Example Diet problem: minimize $2 x+3 y$ subject to $x+2 y \geq 4$, $x \geq 0, y \geq 0$
- Dual problem: maximize $4 p$
subject to $p \leq 2$,
$2 p \leq 3$,
$p \geq 0$
- Dual: the problem faced by a druggist who sells
synthetic protein, trying to compete with peanut
butter and steak

	Simple Example		
- The druggist wants to maximize the price p,			
subject to constraints:			
- synthetic protein must not cost more than protein			
available in foods.			
- price must be non-negative or he won't sell any			
- revenue to druggist will be 4 p		\quad	Solution: $\mathrm{p} \leq 3 / 2 \rightarrow$ objective value $=4 \mathrm{p}=6$
:---			
$=$Not coincidence that it's equal the minimal cost in original problem.			

Proof of Weak Duality

\dagger

- Suppose that
- \mathbf{x} satisfies $A x \leq b, \quad x \geq 0$
- y satisfies $A^{\top} y \geq c, y \geq 0$
- Then
- $c^{\top} x \leq\left(A^{\top} y\right)^{\top} x$ since $x \geq 0$ and $A^{\top} y \geq c$
$=\boldsymbol{y}^{\top} A \mathbf{x} \quad$ by definition
$\leq \mathrm{y}^{\top} \mathrm{b} \quad$ since $\mathrm{y} \geq 0$ and $\mathrm{Ax} \leq \mathrm{b}$
$=\boldsymbol{b}^{\top} \boldsymbol{y}$ by definition
- This says that any feasible solution to the primal (maximization problem) has an objective function value at most that of any feasible solution of the dual (minimization) problem.
- Strong duality says that the optima of the two are equal

What's going on?

- Notice: feasible sets completely different for primal and dual, but nonetheless an important relation between them.
- Duality theorem says that in the competition between the grocer and the druggist the result is always a tie.
- Optimal solution to primal tells purchaser what to do
- Optimal solution to dual fixes the natural prices at which economy should run.
- The diet x and vitamin prices y are optimal when
- grocer sells zero of any food that is priced above its vitamin equivalent.
- druggist charges 0 for any vitamin that is oversupplied in the diet.

Duality Theorem

Druggist's max revenue $=$ Purchasers min cost
Practical Use of Duality:

- Sometimes simplex algorithm (or other algorithms) will run faster on the dual than on the primal.
- Can be used to bound how far you are from optimal solution.
- Is used in algorithm design.
- Important implications for economists.

Ellipsoid Algorithm

- Running time is polynomial but depends on the \# of bits L needed to represent numbers in A, b, and c
- Idea: Hunt lion in Sahara (under assumption there is at most one)
- Fence Sahara in
- Divide in 2 halves with another fence
- Detect one half that has no lion.
- Continue recursively on other side until fenced area so small that either find lion or can argue that no lion could fit in there.
- In ellipsoid algorithm:
- Fenced area is ellipsoid
- Solve feasibility problem: does there exist x s.t. $\mathbf{A x} \geq \mathbf{b}$?

Ellipsoid Algorithm

- Running time is polynomial but depends on the \# of bits L needed to represent numbers in A, b, and c
- Like capacity-scaling for network flow but a much bigger polynomial
- Interior point methods running times also depend on L
- Method applies to large class of convex programs - Can be efficient for LPs with exponentially many constraints
- Open whether a strongly polynomial-time algorithm exists for LP
- One where running time has \# of operations polynomial in just m and n

L LP-based approximations

- We don't know any polynomial-time algorithm for any NP-complete problem
- We know how to solve LP in polynomial time
- We will see that LP can be used to get approximate solutions to some NP-complete problems.

Weighted Vertex Cover

Input: Graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ with non-negative weights w_{v} on the vertices.
Goal: Find a minimum-cost set of vertices S, such that all the edges are covered. An edge is covered iff at least one of its endpoints is in S.

Recall: Weighted Vertex Cover is NP-complete. The best known approximation factor is 2-1/sqrt($\log |\mathbf{V}|)$.

Weighted Vertex Cover

Variables: for each $\mathbf{v} \in \mathbf{V}, \mathbf{x}_{\mathbf{v}}$ - is \mathbf{v} in the cover?
$\operatorname{Min} \Sigma_{\mathrm{v} \in \mathrm{v}} \mathbf{w}_{\mathrm{v}} \mathbf{x}_{\mathrm{v}}$
s.t.
$x_{v}+x_{u} \geq 1, \forall(u, v) \in E$
$\mathbf{x}_{\mathrm{v}} \in\{0,1\} \quad \forall \mathrm{v} \in \mathrm{V}$

The LP Relaxation

This is not a linear program: the constraints of type
$\mathrm{x}_{\mathrm{v}} \in\{0,1\}$ are not linear. We got an LP with integrality constraints on variables - an integer linear program (IP) that is NP-hard to solve.

However, if we replace the constraints $\mathrm{x}_{\mathrm{v}} \in\{0,1\}$
by $x_{v} \geq 0$ and $x_{v} \leq 1$, we will get a linear program.
The resulting LP is called a Linear Relaxation of the IP , since we relax the integrality constraints.

Why LP Relaxation Is Useful?

The optimal value of LP-solution provides a bound on the optimal value of the original optimization problem. $\mathrm{OPT}_{\mathrm{LP}}$ is always better than $\mathrm{OPT}_{\text {IP }}$ (why?)
Therefore, if we find an integral solution within a factor \mathbf{r} of $\mathrm{OPT}_{\mathrm{LP}}$, it is also an \mathbf{r}-approximation of the original problem.
It can be done by 'wise' rounding.

Approximation of Weighted Vertex

 Cover Using LP-Rounding.

1. Solve the LP-Relaxation.
2. Let S be the set of all the vertices v with $x_{v} \geq 1 / 2$. Output S as the solution.

Analysis: The solution is feasible: for each edge $\mathbf{e}=(\mathbf{u}, \mathbf{v})$, either $x_{v} \geq 1 / 2$ or $x_{u} \geq 1 / 2$

The value of the solution is: $\Sigma_{\mathrm{v} \in \mathrm{s}} \mathbf{w}_{\mathrm{v}}=\Sigma_{\left\{\mathrm{v} \mid \mathrm{x}_{\mathrm{v}} \geq 1 / 2\right\}} \mathbf{w}_{\mathrm{v}}$

$$
\leq 2 \Sigma_{\mathrm{v} \in \mathrm{~V}} \mathrm{w}_{\mathrm{v}} \mathrm{x}_{\mathrm{v}}=2 \mathrm{OPT}_{\mathrm{LP}}
$$

Since $O P T_{\mathrm{LP}} \leq \mathrm{OPT}_{\mathrm{Vc}}$, the cost of the solution is

$$
\leq 2 \mathrm{OPT}_{\mathrm{vc}}
$$

\(\left.\begin{array}{|l|l|}\hline \& Linear Programming -Summary

- Of great practical importance to solve linear

programs:

. they model important practical problems

- production, approximating the solution of

inconsistent equations, manufacturing,

network design, flow control, resource

allocation.

- solving an LP is often an important component of

solving or approximating the solution to an

integer linear programming problem.\end{array}\right\}\)| Can be solved in poly-time, but the simplex |
| :--- |
| algorithm works very well in practice. |
| One problem where you really do not want to |
| roll your own code. |

