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CSE 521:  Design & 
Analysis of Algorithms I 

Linear Programming 

From slides by Paul Beame 
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  The process of minimizing a linear objective function 
subject to a finite number of linear equality and 
inequality constraints. 

  The word “programming” is historical and predates 
computer programming. 

  Example applications: 
  airline crew scheduling 
  manufacturing and production planning 
  telecommunications network design 

  “Few problems studied in computer science have 
greater application in the real world.” 

Linear Programming 
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Linear Programming 

  Suggested Readings: 
  Chapter 7 of text by Dasgupta, Papadimitriou, 

Vazirani (link on web page).  

  “Linear Programming”, by Howard Karloff 
  First 34 pages on Simplex Algorithm available through 

Google books preview 

  “Linear Programming”, by Vasek Chvatal 

  “Understanding and Using Linear Programming”, 
by Jiri Matousek and Bernd Gartner 
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  A student is trying to decide on lowest cost diet that 
provides sufficient amount of protein, with two choices: 
  steak: 2 units of protein/pound, $3/pound 
  peanut butter: 1 unit of protein/pound, $2/pound 

  In proper diet, need 4 units protein/day. 
Let x  = # pounds peanut butter/day in the diet. 

Let y  = # pounds steak/day in the diet.   
Goal:  minimize  2x + 3y (total cost) 
subject to constraints: 
   x + 2y ≥ 4 
   x ≥ 0,  y ≥ 0 

This is an LP- formulation 
of our problem 

An Example: The Diet Problem 
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An Example: The Diet Problem 

  This is an optimization problem. 
  Any solution meeting the nutritional demands is called 

a feasible solution 
  A feasible solution of minimum cost is called the 

optimal solution. 

Goal:  minimize  2x + 3y (total cost) 
subject to constraints: 
   x + 2y ≥ 4 
   x ≥ 0,  y ≥ 0 
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A linear program is a problem with n variables x1,
…,xn, that has: 

1.  A linear objective function, which must be 
      minimized/maximized. Looks like: 
          min (max) c1x1+c2x2+… +cnxn 
2.  A set of m linear constraints. A constraint  

looks like:  
           ai1x1 + ai2x2 + … + ainxn ≤ bi (or ≥ or =) 

Note: the values of the coefficients ci,bi, ai,j are 
given in the problem input. 

Linear Program - Definition 
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x+2y=4 

y=0 

x=0 

feasible set 

Visually… 
x= peanut butter, y = steak 
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x+2y=4 

x 

y 

feasible set 

2x+3y=6 
2x+3y=0 

Opt: 
x=0,
y=2 

Minimal price of 
one protein unit 
= 6/4=1.5 

2x+3y=15 

Optimal vector occurs at some 
corner of the feasible set! 
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Optimal vector occurs at some 
corner of the feasible set 

x 

y 

feasible set 

An Example 
with 6 

constraints. 
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Maximize c1x1 + c2x2 +…+ cnxn 
subject to Σ1≤ j ≤n aijxj ≤ bj        i=1..m 
                               xj ≥ 0         j=1..n 
or 
Minimize b1y1 + b2y2 +…+ bmym 
subject to Σ1≤i≤m aijyi ≥ cj       j=1...n 
                             yi ≥ 0        i=1..m 

Standard Form of a Linear Program. 
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Feasible Set 

  Each linear inequality divides n-dimensional 
space into two halfspaces, one where the 
inequality is satisfied, and one where it’s not. 

  Feasible Set : solutions to a family of linear 
inequalities. 
  Convex: for any 2 points in feasible set, the line 

segment joining them is in feasible set. 
  The linear cost functions, defines a family of 

parallel hyperplanes (lines in 2D, planes in 
3D, etc.). Want to find one of minimum cost 
 must occur at corner of feasible set. 
  Corner= can’t be expressed as convex 

combination of 2 or more points in feasible set. 
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The Feasible Set 

  Intersection of a set of half-spaces, called a 
polyhedron. 

  If it’s bounded and nonempty, it’s a polytope. 

There are 3 cases: 
  feasible set is empty. 
  cost function is unbounded on feasible set. 
  cost has a minimum (or maximum) on feasible 

set. 
First two cases very uncommon for real problems 

in economics, science and engineering. 
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Solving LPs 
  There are several algorithms that solve any linear 

program optimally. 
  The Simplex method (class of methods, usually 

very good but worst-case exponential for known 
methods) 

  The Ellipsoid method (polynomial-time) 
  More 

  These algorithms can be implemented in various 
ways. 

  There are many existing software packages for 
LP. 

  It is convenient to use LP as a ``black box'' for 
solving various optimization problems. 
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LP formulation: another example 

Bob’s bakery sells bagel and muffins. 
To bake a dozen bagels Bob needs 5 cups of 

flour, 2 eggs, and 1 cup of sugar. 
To bake a dozen muffins Bob needs 4 cups of 

flour, 4 eggs and 2 cups of sugar. 
Bob can sell bagels at $10/dozen and muffins at 

$12/dozen. 
Bob has 50 cups of flour, 30 eggs and 20 cups of 

sugar. 
How many bagels and muffins should Bob bake 

in order to maximize his revenue? 
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LP formulation: Bob’s bakery 

Maximize c⋅x 
s.t.    Ax ≤ b 
            x ≥ 0. 

           Bagels  Muffins   
Flour      5           4                            
Eggs      2           4 
Sugar     1           2 

       5   4 

      A =     2   4 

       1   2 

Revenue  10        12 

Avail. 
50 
30 
20 

50 
30 
20 

b =     cT = 10  12 

Maximize 10x1+12x2 

s.t.    5x1+4x2 ≤ 50 
         2x1+4x2 ≤ 30 
          x1+2x2 ≤ 20 
         x1 ≥ 0, x2 ≥ 0 
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Idea of the Simplex Method 

The Toy Factory Problem (TFP): 
A toy factory produces dolls and cars. 
Danny, a new employee, is hired. He can produce 2 cars 

and 3 dolls a day. However, the packaging machine can 
only pack 4 items a day. The company’s profit from each 
doll is $10 and from each car is $15. What should 
Danny be asked to do? 

Step 1: Describe the problem as an LP problem. 
Let x1,x2 denote the number of cars and dolls produced by 

Danny. 
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The Toy Factory Problem 

Let x1,x2 denote the number of cars and dolls produced by 
Danny. 

Objective:  
 Max z=15x1+10x2 

s.t            x1 ≤ 2 
             x2 ≤ 3 
        x1+x2 ≤ 4 
        x1 ≥ 0 

                 x2 ≥ 0  
Feasible 
region x1+x2=4 

x1 

x1=2 

x2=3 

x2 
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The Toy Factory Problem 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 Constant profit 
lines –  They are 
always parallel. 
We are looking 
for the best one 
that still 
‘touches’ the 
feasible region. 

z=15 

z=30 z=40 
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Important Observations: 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

1. An optimum solution to the LP is always at a 
corner point 

z=50 

It might be that the 
objective line is parallel 
to a constraint. In this 
case there are many 
optimum points, in 
particular at the relevant 
corner points (consider 
z=15x1+15x2). 
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Important Observations: 

2. If a corner point feasible solution has an objective 
function value that is better than or equal to all its 
adjacent corner point feasible solutions then it is 
optimal. 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

z=50 

3.  There is a finite number of 
corner point feasible solutions. 

The Simplex method: Travel 
along the corner points till a 
local maximum. 
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The Simplex Method 

Phase 1 (start-up): Find any corner point feasible 
solution. In many standard LPs the origin can serve 
as the start-up corner point. 

Phase 2 (iterate): Repeatedly move to a better 
adjacent corner point feasible solution until no 
further better adjacent corner point feasible solution 
can be found. The final corner point defines the 
optimum point. 
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Example: The Toy Factory Problem 

Phase 1: start at (0,0) 
Objective value = Z(0,0)=0 
Iteration 1: Move to (2,0). 
Z(2,0)=30. An Improvement 
Iteration 2: Move to (2,2) 
Z(2,2)=50. An Improvement 
Iteration 3: Consider moving to 

(1,3), Z(1,3)=45 < 50. 
Conclude that (2,2) is 
optimum! 

Feasible 
region 

x1+x2=4 

x1 

x1=2 

x2=3 

x2 

(0,0) (2,0) 

(2,2) 

(1,3) 
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A Central Result of LP Theory: 
Duality Theorem 

  Every linear program has a dual 
  If the original is a minimization, the dual is a 

maximization and vice versa 
  Solution of one leads to solution of other 
Primal:  Maximize  cTx  subject to Ax ≤ b,  x ≥ 0 
Dual:  Minimize  bTy  subject to ATy ≥ c,  y ≥ 0 

If one has optimal solution so does the other, and 
their values are the same. 
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Primal: Maximize  cTx  subject to Ax ≤ b,  x ≥ 0 
Dual: Minimize  bTy  subject to ATy ≥ c,  y ≥ 0 

  In the primal, c is cost function and b was in 
the constraint. In the dual, reversed. 

  Inequality sign is changed and minimization 
turns to maximization. 

Primal:  
maximize 2x + 3y 
s.t  x+2y ≤ 4,   
      2x + 5y≤ 1,  
      x - 3y ≤ 2,   
      x ≥ 0, y ≥ 0 

Dual:  
minimize  4p +q + 2r    s.t    

 p+2q + r ≥ 2,  

       2p+5q -3r ≥ 3,   

       p,q,r ≥ 0 
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Simple Example 
  Diet problem:  minimize 2x + 3y 
     subject to x+2y ≥ 4,   

     x ≥ 0, y ≥ 0 
  Dual problem: maximize    4p  

   subject to   p ≤ 2,  
     2p ≤ 3,  
     p ≥ 0 

  Dual: the problem faced by a druggist who sells 
synthetic protein, trying to compete with peanut 
butter and steak 
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Simple Example 

  The druggist wants to maximize the price p, 
subject to constraints: 
  synthetic protein must not cost more than protein 

available in foods. 
  price must be non-negative or he won’t sell any 
  revenue to druggist will be 4p 

  Solution:  p ≤ 3/2    objective value = 4p = 6 
  Not coincidence that it’s equal the minimal cost in 

original problem.   
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Proof of Weak Duality 

  Suppose that  
  x satisfies Ax ≤ b,  x ≥ 0 
  y satisfies ATy ≥ c,  y ≥ 0 

  Then  
  cTx ≤  (ATy)T x    since x ≥ 0 and ATy ≥ c 
         =  yT A x        by definition 
         ≤  yTb            since y ≥ 0 and Ax ≤ b 
         = bTy             by definition 

  This says that any feasible solution to the primal 
(maximization problem) has an objective function 
value at most that of any feasible solution of the dual 
(minimization) problem.  

  Strong duality says that the optima of the two are 
equal 
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What’s going on? 

  Notice: feasible sets completely different for primal 
and dual, but nonetheless an important relation 
between them. 

  Duality theorem says that in the competition between 
the grocer and the druggist the result is always a tie. 

  Optimal solution to primal tells purchaser what to do. 
  Optimal solution to dual fixes the natural prices at 

which economy should run. 
  The diet x and vitamin prices y are optimal when 

  grocer sells zero of any food that is priced above its vitamin 
equivalent. 

  druggist charges 0 for any vitamin that is oversupplied in the 
diet. 



8!

29 

Duality Theorem 

Druggist’s max revenue = Purchasers min cost 

Practical Use of Duality: 
  Sometimes simplex algorithm (or other 

algorithms) will run faster on the dual than on 
the primal. 

  Can be used to bound how far you are from 
optimal solution. 

  Is used in algorithm design. 
  Important implications for economists. 

30 

Example: Max Flow 

Variables: fuv - the flow on edge e=(u,v). 

             Max  Σu fsu 

                s.t. 
                   fuv ≤ cuv,  ∀(u,v)∈E   

  Σu fuv - Σw fvw = 0,    ∀v∈V-{s,t} 

                    fuv ≥ 0,   ∀(u,v)∈E 
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Ellipsoid Algorithm 

  Running time is polynomial but depends on the # of 
bits L needed to represent numbers in A, b, and c 

  Idea: Hunt lion in Sahara (under assumption there is 
at most one) 
  Fence Sahara in 
  Divide in 2 halves with another fence 
  Detect one half that has no lion. 
  Continue recursively on other side until fenced area so small 

that either find lion or can argue that no lion could fit in there. 
  In ellipsoid algorithm: 

  Fenced area is ellipsoid 
  Solve feasibility problem: does there exist x s.t. Ax ≥ b? 

32 

Ellipsoid Algorithm 

  Running time is polynomial but depends on the # of 
bits L needed to represent numbers in A, b, and c 
  Like capacity-scaling for network flow but a much bigger 

polynomial 
  Interior point methods running times also depend on L 

  Method applies to large class of convex programs 
  Can be efficient for LPs with exponentially many constraints 

  Open whether a strongly polynomial-time algorithm 
exists for LP 
  One where running time has # of operations polynomial in 

just m and n 
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Integer Programming (IP) 

  An LP problem with an additional requirement 
that variables will only get an integral value, 
maybe from some range. 

  01P – binary integer programming: variables 
should be assigned only 0 or 1. 

  Can model many problems. 
  NP-hard to solve! 
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01P Example: Vertex Cover 

Variables: for each v∈V, xv – is v in the cover? 
Minimize  Σvxv    
Subject to:  xv ∈ {0,1} 

      xu + xv  ≥ 1   ∀(u,v)∈ E   
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01P Example:  Weighted Set Cover 

Input: a Collection S1, S2,…,Sn of subsets of {1,2,3,
…,m} a cost pi for set Si. 

Output: A collection of subsets whose union is {1,2,
…,m}. 

Objective: Minimum total cost of selected subsets. 

Variables: For each subset, xi – is subset Si selected for 
the cover? 

Minimize   ∑i pi·xi    
Subject to:  xi∈ {0,1}n 

      ∑ j∈ Si xi ≥ 1    ∀j=1..m 
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01P Example: Shortest Path 

Given a directed graph G(V,E), s,t ∈ V and length 
pe for edge e. 

Variables: For each edge, xe – is e in the path? 

Minimize   ∑e pe xe    
Subject to:  xe∈ {0,1}     ∀e ∈ E 

                    ∑ e∈ A xe  ≥  1   ∀s→t cut A s 

t 

A 
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LP-based approximations 

  We don’t know any polynomial-time algorithm 
for any NP-complete problem 

  We know how to solve LP in polynomial time 
  We will see that LP can be used to get 

approximate solutions to some NP-complete 
problems. 
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 Weighted Vertex Cover 

Input: Graph G=(V,E) with non-negative weights 
wv on the vertices. 

Goal: Find a minimum-cost set of vertices S, 
such that all the edges are covered. An edge 
is covered iff at least one of its endpoints is in 
S. 

Recall: Weighted Vertex Cover is NP-complete.  
   The best known approximation factor is      
   2- 1/sqrt(log|V|). 
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Weighted Vertex Cover 

Variables: for each v∈V, xv – is v in the cover? 

Min  Σv∈V wvxv 

s.t. 
 xv + xu ≥ 1,  ∀(u,v)∈E   

 xv ∈ {0,1}   ∀v∈V 
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The LP Relaxation 

This is not a linear program: the constraints of type 
xv ∈ {0,1} are not linear. We got an LP with integrality 

constraints on variables – an integer linear program 
(IP) that is NP-hard to solve. 

However, if we replace the constraints xv ∈ {0,1} 
by xv ≥ 0 and xv ≤ 1, we will get a linear program. 

The resulting LP is called a Linear Relaxation of the 
IP, since we relax the integrality constraints. 
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LP Relaxation of Weighted Vertex 
Cover 

Min  Σv∈V wvxv 

s.t. 
 xv + xu ≥ 1,  ∀(u,v)∈E   

  xv ≥ 0,  ∀v∈V 
    xv ≤ 1,  ∀v∈V 
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LP Relaxation of Weighted Vertex 
Cover - example 

Consider the case of a 3-cycle in 
which all weights are 1. 

An optimal VC has cost 2 (any two 
vertices) 

An optimal relaxation has cost 3/2 (for 
all three vertices xv=1/2)  

½ 

½ 

½ 
The LP and the IP are different 
problems. Can we still learn 
something about Integral VC? 
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Why LP Relaxation Is Useful ?  

The optimal value of LP-solution provides a 
bound on the optimal value of the original 
optimization problem. OPTLP is always better 
than OPTIP (why?) 

Therefore, if we find an integral solution within a 
factor r of OPTLP, it is also an r-approximation of 
the original problem. 

It can be done by ‘wise’ rounding. 
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Approximation of Weighted Vertex 
Cover Using LP-Rounding 

1. Solve the LP-Relaxation. 

2. Let S be the set of all the vertices v with xv ≥ 1/2.    
Output S as the solution. 

Analysis: The solution is feasible: for each edge e=(u,v), 
either xv ≥ 1/2 or xu ≥ 1/2 

The value of the solution is: Σv∈s wv = Σ{v| xv ≥1/2} wv             
                                     ≤ 2 Σv∈V wvxv =2 OPTLP 

Since OPTLP ≤ OPTVC, the cost of the solution is                
         ≤ 2 OPTVC. 
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Linear Programming -Summary 

  Of great practical importance to solve linear 
programs: 
  they model important practical problems 

  production, approximating the solution of 
inconsistent equations, manufacturing, 
network design, flow control, resource 
allocation. 

  solving an LP is often an important component of 
solving or approximating the solution to an 
integer linear programming problem. 

  Can be solved in poly-time, but the simplex 
algorithm works very well in practice.  

  One problem where you really do not want to 
roll your own code. 


