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CSE 521:  Design & 
Analysis of Algorithms I 

Dealing with NP-completeness 
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What to do if the  problem you want 
to solve is NP-hard 

  Can you take advantage of special structure? 
  e.g., in practice, the graphs that actually arise are 

far from arbitrary 
  maybe they have some special characteristic 

that allows you to solve the problem in your 
special case 

  for example the Independent-Set problem is easy on 
“interval graphs” 

  Exactly the case for interval scheduling! 

  search the literature to see if special cases 
already solved 
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What to do if the  problem you want 
to solve is NP-hard 

  Try an algorithm that is provably fast “on 
average”. 
  To even try this one needs a model of what a 

typical instance is. 
  Typically, people consider “random graphs” 

  e.g. all graphs with a given # of edges are 
equally likely 

  Problems: 
  real data may not look like the random graphs 
  distributions of real data aren’t easily 

analyzable 
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What to do if the  problem you want 
to solve is NP-hard 

  Use algorithms that are not efficient 
  Branch and bound, brute force 

  Use algorithms that are not provably optimal 
  Heuristics such as local search, simulated annealing 

  Use approximation algorithms. 
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What to do if the  problem you want 
to solve is NP-hard 

  Use heuristic algorithms and hope they 
give good answers 
  No guarantees of quality 
  Many different types of heuristic algorithms 

  Many different options, especially for 
optimization problems, such as TSP, where 
we want the best solution. 
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Heuristic algorithms for 
NP-hard problems 

  local search for optimization problems 
  need a notion of two solutions being 

neighbors 
  Start at an arbitrary solution S 
  While there is a neighbor T of S that is 

better than S 
 S←T 

  Usually fast but often gets stuck in a local 
optimum and misses the global optimum 
  With some notions of neighbor can take a long 

time in the worst case 
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e.g., Neighboring solutions for TSP 

Solution S! Solution T!

Two solutions are neighbors !
iff there is a pair of edges you can!
swap to transform one to the other!
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Heuristic algorithms for 
NP-hard problems 

  randomized local search 
  start local search several times from random starting points and 

take the best answer found from each point 
  more expensive than plain local search but usually 

much better answers 
  simulated annealing 

  like local search but at each step sometimes move to a worse 
neighbor with some probability 

  probability of going to a worse neighbor is set to decrease 
with time as, presumably, solution is closer to optimal 

  helps avoid getting stuck in a local optimum but often slow 
to converge (much more expensive than randomized local 
search) 

  analogy with slow cooling to get to lowest energy state in a 
crystal. 
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What to do if the  problem you want 
to solve is NP-hard 

  Try to find an approximation algorithm 
  Maybe you can’t get the size of the best Vertex 

Cover but you can find one within a factor of 2 of 
the best 

  Given graph G=(V,E), start with an empty cover 
  While there are still edges in E left 

  Choose an edge e={u,v} in E and add both u and v 
to the cover 

  Remove all edges from E that touch either u or v. 
  Edges chosen don’t share any vertices so 

optimal cover size must be at least # of edges 
chosen 
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What to do if the  problem you want 
to solve is NP-hard 

  Try to find an approximation algorithm 
  A c-approximation algorithm is a polynomial time 

algorithm that always produces a solution within a 
factor of c of optimal. 

  (If algorithm is randomized, require expected cost 
within a factor of c of optimal.) 

  In last 20 years, huge progress: 
  Complexity – powerful techniques for proving no c-

approx algs exist unless P=NP 
  Algorithms – new techniques 
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What to do if the  problem you want 
to solve is NP-hard 

  4 classes of techniques: 
  Old-fashioned: greedy, dynamic programming 

based, etc. 
  LP-based rounding 
  Primal-dual schema 
  Semi-definite programming based. 
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Travelling Salesperson Problem 

  TSP  
  Given a weighted graph G find of a 

smallest weight tour that visits all vertices 
in G 

  NP-hard 

  Start with classic result. 
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Minimum Spanning Tree 
Approximation 
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Minimum Spanning Tree 
Approximation: Factor of 2 

MST(G) ≤ TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G) 

Any tour contains a spanning tree  

15 

Why did this work? 

  We found an Euler tour on a graph that 
used the edges of the original graph 
(possibly repeated). 

  The weight of the tour was the total 
weight of the new graph. 

  Suppose now 
  All edges possible 
  Weights satisfy triangle inequality 

  c(u,w) ≤ c(u,v)+c(v,w) 
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Minimum Spanning Tree 
Approximation: Triangle Inequality 

Can shortcut edges  
•  Go to next new vertex 
  on the Euler tour 
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Minimum Spanning Tree 
Approximation: Factor of 2 

TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G) 

Shortcut edges 
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Christofides Algorithm:                      
A factor 3/2 approximation 

  Any Eulerian subgraph of the weighted complete 
graph will do 
  Eulerian graphs require that all vertices have even degree so 

  Christofides Algorithm 
  Compute an MST T 
  Find the set O of odd-degree vertices in T 
  Add a minimum-weight perfect matching M on the vertices in 

O to T to make every vertex have even degree 
  There are an even number of odd-degree vertices! 
  M is polytime computable for non-bipartite graphs (not 

easy) 
  Use an Euler Tour E in T∪M and then shortcut as before 

  Claim: Cost(E) ≤ 1.5 TOUROPT 
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Christofides Approximation 
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Christofides Approximation 

Claim: 2 Cost(M) ≤ TOUROPT 

Any tour costs at least the cost of two matchings on O 
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LP-Based Algorithms 

  Formulate problem as 01P 
  Relax to linear program. 
  Solve linear program 
  Round linear programming solution, hopefully 

without changing the value of the objective 
too much. 
  Deterministic rounding 
  Randomized rounding 
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Semidefinite-Programming Based 
Algorithms 

  Formulate problem as 01 quadratic program 
  Relax to semi-definite program  (SDP). 
  Solve SDP 
  Round solution 
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What to do if the  problem you want 
to solve is NP-hard 

  More on approximation algorithms 
  Recent research has classified problems based on what 

kinds of approximations are possible if P≠NP 
  Best: (1+ε) factor for any ε>0. 

  packing and some scheduling problems, TSP in plane 

  Some fixed constant factor > 1, e.g. 2, 3/2, 100 
  Vertex Cover, TSP in space, other scheduling problems  

  Θ(log n) factor 
  Set Cover, Graph Partitioning problems 

  Worst: Ω(n1-ε) factor for any ε>0 
  Clique, Independent-Set, Coloring 
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What to do if the  problem you want 
to solve is NP-hard 

  Polynomial-time approximation algorithms for 
NP-hard problems can sometimes be ruled 
out unless P=NP 
  E.g. Coloring Problem:  Given a graph G=(V,E) 

find the smallest k such that G has a k-coloring. 
  No approximation ratio better than 4/3 is 

possible unless P=NP  
  The graph in our NP-completeness 

reduction is always 4-colorable. This would 
let us figure out if it is 3-colorable. 
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PCP Theorem and Hardness of 
Approximation 

  PCP (Probabilistically Checkable Proofs) Theorem: Every 
A∊ NP has a polytime verifier V that looks at only 3 
random bits of its certificate c such that 
  x∊A   ⇒ There is a certificate c such that V(x,c) always  
  outputs  YES 

  x not ∊ A ⇒  For every certificate c, V(x,c) outputs YES with 
         probability < 0.99999 

  Implies that there is a polytime reduction f such that 
  F ∊ 3SAT ⇒ f(F) ∊ 3SAT  
  F not ∊ #SAT ⇒ any truth assignment to f(F) satisfies at most 
             88% (< 7/8+ε) of clauses of F 


