
1!

1

CSE 521: Design &
Analysis of Algorithms I

Dealing with NP-completeness

2

What to do if the problem you want
to solve is NP-hard

  Can you take advantage of special structure?
  e.g., in practice, the graphs that actually arise are

far from arbitrary
  maybe they have some special characteristic

that allows you to solve the problem in your
special case

  for example the Independent-Set problem is easy on
“interval graphs”

  Exactly the case for interval scheduling!

  search the literature to see if special cases
already solved

3

What to do if the problem you want
to solve is NP-hard

  Try an algorithm that is provably fast “on
average”.
  To even try this one needs a model of what a

typical instance is.
  Typically, people consider “random graphs”

  e.g. all graphs with a given # of edges are
equally likely

  Problems:
  real data may not look like the random graphs
  distributions of real data aren’t easily

analyzable

4

What to do if the problem you want
to solve is NP-hard

  Use algorithms that are not efficient
  Branch and bound, brute force

  Use algorithms that are not provably optimal
  Heuristics such as local search, simulated annealing

  Use approximation algorithms.

5

What to do if the problem you want
to solve is NP-hard

  Use heuristic algorithms and hope they
give good answers
  No guarantees of quality
  Many different types of heuristic algorithms

  Many different options, especially for
optimization problems, such as TSP, where
we want the best solution.

6

Heuristic algorithms for
NP-hard problems

  local search for optimization problems
  need a notion of two solutions being

neighbors
  Start at an arbitrary solution S
  While there is a neighbor T of S that is

better than S
 S←T

  Usually fast but often gets stuck in a local
optimum and misses the global optimum
  With some notions of neighbor can take a long

time in the worst case

2!

7

e.g., Neighboring solutions for TSP

Solution S! Solution T!

Two solutions are neighbors !
iff there is a pair of edges you can!
swap to transform one to the other!

8

Heuristic algorithms for
NP-hard problems

  randomized local search
  start local search several times from random starting points and

take the best answer found from each point
  more expensive than plain local search but usually

much better answers
  simulated annealing

  like local search but at each step sometimes move to a worse
neighbor with some probability

  probability of going to a worse neighbor is set to decrease
with time as, presumably, solution is closer to optimal

  helps avoid getting stuck in a local optimum but often slow
to converge (much more expensive than randomized local
search)

  analogy with slow cooling to get to lowest energy state in a
crystal.

9

What to do if the problem you want
to solve is NP-hard

  Try to find an approximation algorithm
  Maybe you can’t get the size of the best Vertex

Cover but you can find one within a factor of 2 of
the best

  Given graph G=(V,E), start with an empty cover
  While there are still edges in E left

  Choose an edge e={u,v} in E and add both u and v
to the cover

  Remove all edges from E that touch either u or v.
  Edges chosen don’t share any vertices so

optimal cover size must be at least # of edges
chosen

10

What to do if the problem you want
to solve is NP-hard

  Try to find an approximation algorithm
  A c-approximation algorithm is a polynomial time

algorithm that always produces a solution within a
factor of c of optimal.

  (If algorithm is randomized, require expected cost
within a factor of c of optimal.)

  In last 20 years, huge progress:
  Complexity – powerful techniques for proving no c-

approx algs exist unless P=NP
  Algorithms – new techniques

11

What to do if the problem you want
to solve is NP-hard

  4 classes of techniques:
  Old-fashioned: greedy, dynamic programming

based, etc.
  LP-based rounding
  Primal-dual schema
  Semi-definite programming based.

12

Travelling Salesperson Problem

  TSP
  Given a weighted graph G find of a

smallest weight tour that visits all vertices
in G

  NP-hard

  Start with classic result.

3!

13

Minimum Spanning Tree
Approximation

14

Minimum Spanning Tree
Approximation: Factor of 2

MST(G) ≤ TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Any tour contains a spanning tree

15

Why did this work?

  We found an Euler tour on a graph that
used the edges of the original graph
(possibly repeated).

  The weight of the tour was the total
weight of the new graph.

  Suppose now
  All edges possible
  Weights satisfy triangle inequality

  c(u,w) ≤ c(u,v)+c(v,w)
16

Minimum Spanning Tree
Approximation: Triangle Inequality

Can shortcut edges
•  Go to next new vertex
 on the Euler tour

17

Minimum Spanning Tree
Approximation: Factor of 2

TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Shortcut edges

18

Christofides Algorithm:
A factor 3/2 approximation

  Any Eulerian subgraph of the weighted complete
graph will do
  Eulerian graphs require that all vertices have even degree so

  Christofides Algorithm
  Compute an MST T
  Find the set O of odd-degree vertices in T
  Add a minimum-weight perfect matching M on the vertices in

O to T to make every vertex have even degree
  There are an even number of odd-degree vertices!
  M is polytime computable for non-bipartite graphs (not

easy)
  Use an Euler Tour E in T∪M and then shortcut as before

  Claim: Cost(E) ≤ 1.5 TOUROPT

4!

19

Christofides Approximation

20

Christofides Approximation

Claim: 2 Cost(M) ≤ TOUROPT

Any tour costs at least the cost of two matchings on O

21

LP-Based Algorithms

  Formulate problem as 01P
  Relax to linear program.
  Solve linear program
  Round linear programming solution, hopefully

without changing the value of the objective
too much.
  Deterministic rounding
  Randomized rounding

22

Semidefinite-Programming Based
Algorithms

  Formulate problem as 01 quadratic program
  Relax to semi-definite program (SDP).
  Solve SDP
  Round solution

23

What to do if the problem you want
to solve is NP-hard

  More on approximation algorithms
  Recent research has classified problems based on what

kinds of approximations are possible if P≠NP
  Best: (1+ε) factor for any ε>0.

  packing and some scheduling problems, TSP in plane

  Some fixed constant factor > 1, e.g. 2, 3/2, 100
  Vertex Cover, TSP in space, other scheduling problems

  Θ(log n) factor
  Set Cover, Graph Partitioning problems

  Worst: Ω(n1-ε) factor for any ε>0
  Clique, Independent-Set, Coloring

24

What to do if the problem you want
to solve is NP-hard

  Polynomial-time approximation algorithms for
NP-hard problems can sometimes be ruled
out unless P=NP
  E.g. Coloring Problem: Given a graph G=(V,E)

find the smallest k such that G has a k-coloring.
  No approximation ratio better than 4/3 is

possible unless P=NP
  The graph in our NP-completeness

reduction is always 4-colorable. This would
let us figure out if it is 3-colorable.

5!

25

PCP Theorem and Hardness of
Approximation

  PCP (Probabilistically Checkable Proofs) Theorem: Every
A∊ NP has a polytime verifier V that looks at only 3
random bits of its certificate c such that
  x∊A ⇒ There is a certificate c such that V(x,c) always
 outputs YES

  x not ∊ A ⇒ For every certificate c, V(x,c) outputs YES with
 probability < 0.99999

  Implies that there is a polytime reduction f such that
  F ∊ 3SAT ⇒ f(F) ∊ 3SAT
  F not ∊ #SAT ⇒ any truth assignment to f(F) satisfies at most
 88% (< 7/8+ε) of clauses of F

