
1!

1

CSE 521: Design &
Analysis of Algorithms I

Dealing with NP-completeness

2

What to do if the problem you want
to solve is NP-hard

  Can you take advantage of special structure?
  e.g., in practice, the graphs that actually arise are

far from arbitrary
  maybe they have some special characteristic

that allows you to solve the problem in your
special case

  for example the Independent-Set problem is easy on
“interval graphs”

  Exactly the case for interval scheduling!

  search the literature to see if special cases
already solved

3

What to do if the problem you want
to solve is NP-hard

  Try an algorithm that is provably fast “on
average”.
  To even try this one needs a model of what a

typical instance is.
  Typically, people consider “random graphs”

  e.g. all graphs with a given # of edges are
equally likely

  Problems:
  real data may not look like the random graphs
  distributions of real data aren’t easily

analyzable

4

What to do if the problem you want
to solve is NP-hard

  Use algorithms that are not efficient
  Branch and bound, brute force

  Use algorithms that are not provably optimal
  Heuristics such as local search, simulated annealing

  Use approximation algorithms.

5

What to do if the problem you want
to solve is NP-hard

  Use heuristic algorithms and hope they
give good answers
  No guarantees of quality
  Many different types of heuristic algorithms

  Many different options, especially for
optimization problems, such as TSP, where
we want the best solution.

6

Heuristic algorithms for
NP-hard problems

  local search for optimization problems
  need a notion of two solutions being

neighbors
  Start at an arbitrary solution S
  While there is a neighbor T of S that is

better than S
 S←T

  Usually fast but often gets stuck in a local
optimum and misses the global optimum
  With some notions of neighbor can take a long

time in the worst case

2!

7

e.g., Neighboring solutions for TSP

Solution S! Solution T!

Two solutions are neighbors !
iff there is a pair of edges you can!
swap to transform one to the other!

8

Heuristic algorithms for
NP-hard problems

  randomized local search
  start local search several times from random starting points and

take the best answer found from each point
  more expensive than plain local search but usually

much better answers
  simulated annealing

  like local search but at each step sometimes move to a worse
neighbor with some probability

  probability of going to a worse neighbor is set to decrease
with time as, presumably, solution is closer to optimal

  helps avoid getting stuck in a local optimum but often slow
to converge (much more expensive than randomized local
search)

  analogy with slow cooling to get to lowest energy state in a
crystal.

9

What to do if the problem you want
to solve is NP-hard

  Try to find an approximation algorithm
  Maybe you can’t get the size of the best Vertex

Cover but you can find one within a factor of 2 of
the best

  Given graph G=(V,E), start with an empty cover
  While there are still edges in E left

  Choose an edge e={u,v} in E and add both u and v
to the cover

  Remove all edges from E that touch either u or v.
  Edges chosen don’t share any vertices so

optimal cover size must be at least # of edges
chosen

10

What to do if the problem you want
to solve is NP-hard

  Try to find an approximation algorithm
  A c-approximation algorithm is a polynomial time

algorithm that always produces a solution within a
factor of c of optimal.

  (If algorithm is randomized, require expected cost
within a factor of c of optimal.)

  In last 20 years, huge progress:
  Complexity – powerful techniques for proving no c-

approx algs exist unless P=NP
  Algorithms – new techniques

11

What to do if the problem you want
to solve is NP-hard

  4 classes of techniques:
  Old-fashioned: greedy, dynamic programming

based, etc.
  LP-based rounding
  Primal-dual schema
  Semi-definite programming based.

12

Travelling Salesperson Problem

  TSP
  Given a weighted graph G find of a

smallest weight tour that visits all vertices
in G

  NP-hard

  Start with classic result.

3!

13

Minimum Spanning Tree
Approximation

14

Minimum Spanning Tree
Approximation: Factor of 2

MST(G) ≤ TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Any tour contains a spanning tree

15

Why did this work?

  We found an Euler tour on a graph that
used the edges of the original graph
(possibly repeated).

  The weight of the tour was the total
weight of the new graph.

  Suppose now
  All edges possible
  Weights satisfy triangle inequality

  c(u,w) ≤ c(u,v)+c(v,w)
16

Minimum Spanning Tree
Approximation: Triangle Inequality

Can shortcut edges
•  Go to next new vertex
 on the Euler tour

17

Minimum Spanning Tree
Approximation: Factor of 2

TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G)

Shortcut edges

18

Christofides Algorithm:
A factor 3/2 approximation

  Any Eulerian subgraph of the weighted complete
graph will do
  Eulerian graphs require that all vertices have even degree so

  Christofides Algorithm
  Compute an MST T
  Find the set O of odd-degree vertices in T
  Add a minimum-weight perfect matching M on the vertices in

O to T to make every vertex have even degree
  There are an even number of odd-degree vertices!
  M is polytime computable for non-bipartite graphs (not

easy)
  Use an Euler Tour E in T∪M and then shortcut as before

  Claim: Cost(E) ≤ 1.5 TOUROPT

4!

19

Christofides Approximation

20

Christofides Approximation

Claim: 2 Cost(M) ≤ TOUROPT

Any tour costs at least the cost of two matchings on O

21

LP-Based Algorithms

  Formulate problem as 01P
  Relax to linear program.
  Solve linear program
  Round linear programming solution, hopefully

without changing the value of the objective
too much.
  Deterministic rounding
  Randomized rounding

22

Semidefinite-Programming Based
Algorithms

  Formulate problem as 01 quadratic program
  Relax to semi-definite program (SDP).
  Solve SDP
  Round solution

23

What to do if the problem you want
to solve is NP-hard

  More on approximation algorithms
  Recent research has classified problems based on what

kinds of approximations are possible if P≠NP
  Best: (1+ε) factor for any ε>0.

  packing and some scheduling problems, TSP in plane

  Some fixed constant factor > 1, e.g. 2, 3/2, 100
  Vertex Cover, TSP in space, other scheduling problems

  Θ(log n) factor
  Set Cover, Graph Partitioning problems

  Worst: Ω(n1-ε) factor for any ε>0
  Clique, Independent-Set, Coloring

24

What to do if the problem you want
to solve is NP-hard

  Polynomial-time approximation algorithms for
NP-hard problems can sometimes be ruled
out unless P=NP
  E.g. Coloring Problem: Given a graph G=(V,E)

find the smallest k such that G has a k-coloring.
  No approximation ratio better than 4/3 is

possible unless P=NP
  The graph in our NP-completeness

reduction is always 4-colorable. This would
let us figure out if it is 3-colorable.

5!

25

PCP Theorem and Hardness of
Approximation

  PCP (Probabilistically Checkable Proofs) Theorem: Every
A∊ NP has a polytime verifier V that looks at only 3
random bits of its certificate c such that
  x∊A ⇒ There is a certificate c such that V(x,c) always
 outputs YES

  x not ∊ A ⇒ For every certificate c, V(x,c) outputs YES with
 probability < 0.99999

  Implies that there is a polytime reduction f such that
  F ∊ 3SAT ⇒ f(F) ∊ 3SAT
  F not ∊ #SAT ⇒ any truth assignment to f(F) satisfies at most
 88% (< 7/8+ε) of clauses of F

