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CSE 521:  Design & 
Analysis of Algorithms I 

Dealing with NP-completeness 
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What to do if the  problem you want 
to solve is NP-hard 

  Can you take advantage of special structure? 
  e.g., in practice, the graphs that actually arise are 

far from arbitrary 
  maybe they have some special characteristic 

that allows you to solve the problem in your 
special case 

  for example the Independent-Set problem is easy on 
“interval graphs” 

  Exactly the case for interval scheduling! 

  search the literature to see if special cases 
already solved 
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What to do if the  problem you want 
to solve is NP-hard 

  Try an algorithm that is provably fast “on 
average”. 
  To even try this one needs a model of what a 

typical instance is. 
  Typically, people consider “random graphs” 

  e.g. all graphs with a given # of edges are 
equally likely 

  Problems: 
  real data may not look like the random graphs 
  distributions of real data aren’t easily 

analyzable 
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What to do if the  problem you want 
to solve is NP-hard 

  Use algorithms that are not efficient 
  Branch and bound, brute force 

  Use algorithms that are not provably optimal 
  Heuristics such as local search, simulated annealing 

  Use approximation algorithms. 
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What to do if the  problem you want 
to solve is NP-hard 

  Use heuristic algorithms and hope they 
give good answers 
  No guarantees of quality 
  Many different types of heuristic algorithms 

  Many different options, especially for 
optimization problems, such as TSP, where 
we want the best solution. 
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Heuristic algorithms for 
NP-hard problems 

  local search for optimization problems 
  need a notion of two solutions being 

neighbors 
  Start at an arbitrary solution S 
  While there is a neighbor T of S that is 

better than S 
 S←T 

  Usually fast but often gets stuck in a local 
optimum and misses the global optimum 
  With some notions of neighbor can take a long 

time in the worst case 
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e.g., Neighboring solutions for TSP 

Solution S! Solution T!

Two solutions are neighbors !
iff there is a pair of edges you can!
swap to transform one to the other!
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Heuristic algorithms for 
NP-hard problems 

  randomized local search 
  start local search several times from random starting points and 

take the best answer found from each point 
  more expensive than plain local search but usually 

much better answers 
  simulated annealing 

  like local search but at each step sometimes move to a worse 
neighbor with some probability 

  probability of going to a worse neighbor is set to decrease 
with time as, presumably, solution is closer to optimal 

  helps avoid getting stuck in a local optimum but often slow 
to converge (much more expensive than randomized local 
search) 

  analogy with slow cooling to get to lowest energy state in a 
crystal. 
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What to do if the  problem you want 
to solve is NP-hard 

  Try to find an approximation algorithm 
  Maybe you can’t get the size of the best Vertex 

Cover but you can find one within a factor of 2 of 
the best 

  Given graph G=(V,E), start with an empty cover 
  While there are still edges in E left 

  Choose an edge e={u,v} in E and add both u and v 
to the cover 

  Remove all edges from E that touch either u or v. 
  Edges chosen don’t share any vertices so 

optimal cover size must be at least # of edges 
chosen 
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What to do if the  problem you want 
to solve is NP-hard 

  Try to find an approximation algorithm 
  A c-approximation algorithm is a polynomial time 

algorithm that always produces a solution within a 
factor of c of optimal. 

  (If algorithm is randomized, require expected cost 
within a factor of c of optimal.) 

  In last 20 years, huge progress: 
  Complexity – powerful techniques for proving no c-

approx algs exist unless P=NP 
  Algorithms – new techniques 
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What to do if the  problem you want 
to solve is NP-hard 

  4 classes of techniques: 
  Old-fashioned: greedy, dynamic programming 

based, etc. 
  LP-based rounding 
  Primal-dual schema 
  Semi-definite programming based. 
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Travelling Salesperson Problem 

  TSP  
  Given a weighted graph G find of a 

smallest weight tour that visits all vertices 
in G 

  NP-hard 

  Start with classic result. 
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Minimum Spanning Tree 
Approximation 
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Minimum Spanning Tree 
Approximation: Factor of 2 

MST(G) ≤ TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G) 

Any tour contains a spanning tree  
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Why did this work? 

  We found an Euler tour on a graph that 
used the edges of the original graph 
(possibly repeated). 

  The weight of the tour was the total 
weight of the new graph. 

  Suppose now 
  All edges possible 
  Weights satisfy triangle inequality 

  c(u,w) ≤ c(u,v)+c(v,w) 
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Minimum Spanning Tree 
Approximation: Triangle Inequality 

Can shortcut edges  
•  Go to next new vertex 
  on the Euler tour 
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Minimum Spanning Tree 
Approximation: Factor of 2 

TOUROPT(G) ≤ 2 MST(G) ≤ 2 TOUROPT(G) 

Shortcut edges 
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Christofides Algorithm:                      
A factor 3/2 approximation 

  Any Eulerian subgraph of the weighted complete 
graph will do 
  Eulerian graphs require that all vertices have even degree so 

  Christofides Algorithm 
  Compute an MST T 
  Find the set O of odd-degree vertices in T 
  Add a minimum-weight perfect matching M on the vertices in 

O to T to make every vertex have even degree 
  There are an even number of odd-degree vertices! 
  M is polytime computable for non-bipartite graphs (not 

easy) 
  Use an Euler Tour E in T∪M and then shortcut as before 

  Claim: Cost(E) ≤ 1.5 TOUROPT 
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Christofides Approximation 
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Christofides Approximation 

Claim: 2 Cost(M) ≤ TOUROPT 

Any tour costs at least the cost of two matchings on O 
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LP-Based Algorithms 

  Formulate problem as 01P 
  Relax to linear program. 
  Solve linear program 
  Round linear programming solution, hopefully 

without changing the value of the objective 
too much. 
  Deterministic rounding 
  Randomized rounding 
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Semidefinite-Programming Based 
Algorithms 

  Formulate problem as 01 quadratic program 
  Relax to semi-definite program  (SDP). 
  Solve SDP 
  Round solution 
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What to do if the  problem you want 
to solve is NP-hard 

  More on approximation algorithms 
  Recent research has classified problems based on what 

kinds of approximations are possible if P≠NP 
  Best: (1+ε) factor for any ε>0. 

  packing and some scheduling problems, TSP in plane 

  Some fixed constant factor > 1, e.g. 2, 3/2, 100 
  Vertex Cover, TSP in space, other scheduling problems  

  Θ(log n) factor 
  Set Cover, Graph Partitioning problems 

  Worst: Ω(n1-ε) factor for any ε>0 
  Clique, Independent-Set, Coloring 
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What to do if the  problem you want 
to solve is NP-hard 

  Polynomial-time approximation algorithms for 
NP-hard problems can sometimes be ruled 
out unless P=NP 
  E.g. Coloring Problem:  Given a graph G=(V,E) 

find the smallest k such that G has a k-coloring. 
  No approximation ratio better than 4/3 is 

possible unless P=NP  
  The graph in our NP-completeness 

reduction is always 4-colorable. This would 
let us figure out if it is 3-colorable. 
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PCP Theorem and Hardness of 
Approximation 

  PCP (Probabilistically Checkable Proofs) Theorem: Every 
A∊ NP has a polytime verifier V that looks at only 3 
random bits of its certificate c such that 
  x∊A   ⇒ There is a certificate c such that V(x,c) always  
  outputs  YES 

  x not ∊ A ⇒  For every certificate c, V(x,c) outputs YES with 
         probability < 0.99999 

  Implies that there is a polytime reduction f such that 
  F ∊ 3SAT ⇒ f(F) ∊ 3SAT  
  F not ∊ #SAT ⇒ any truth assignment to f(F) satisfies at most 
             88% (< 7/8+ε) of clauses of F 


