
CSE521 Homework 3 Solution

Problem 1. Let Xij, i < j be the indicator that the ith and jth elements are compared. Also, let α be the
process described in the problem statement. Then, by linearity of expectaion and the fact that the ith and
jth elements are compared at most once during the process, we have:

E [C] = Eα

 ∑
16i<j6n

Xij

 (1)

=
∑

16i<j6n

Eα [Xij] (2)

=
∑

16i<j6n

Prα [Xij = 1]. (3)

where C is the number of comparisons made.
To compute Prα [Xij = 1], we define another process β such that Prβ [Xij = 1] = Prα [Xij = 1], but β is

easier to analyze. This process is optained by “expanding” each step of α, so that instead of choosing a pivot
uniformly at random in “the current set” S, we keep picking elements uniformly at random in the original
set until an element in S is picked. One can easily verify that for any x ∈ S, the probability of x being picked
by this sub-process is exactly 1

|S| . Thus, the probability that either i and j is picked in β is the same as that
probability in α, which means Prβ [Xij = 1] = Prα [Xij = 1].

Now we compute Prβ [Xij = 1] where i < j 6 k. We say that β determines Xij at some step if after
that step, we know the value of Xij. At any step of β, the probability (conditioned on the fact that β did
not determine Xij before this step) that Xij = 1 is 2

n . Also, the probability that β still haven’t determined
Xij after this step is the probability that the picked element is either before i or after k, which is i−1+n−k

n .

Therefore, the probability that Xij is determined to be 1 at some step t is 2
n ·
(
n−k+i−1

n

)t−1. This gives us:

Prβ [Xij = 1] =
2

n

∞∑
t=1

(
n− k+ i− 1

n

)t−1
(4)

=
2

n
· 1

1− n−k+i−1
n

(5)

=
2

n
· n

k− i+ 1
(6)

=
2

k− i+ 1
(7)

Similarly, we have

Prβ [Xij = 1] =
2

j− i+ 1
for i 6 k 6 j (8)

Prβ [Xij = 1] =
2

j− k+ 1
for k 6 i < j (9)

The rest of the proof is a matter of algebraic manipulations. Let Hm be the mth hamonic number, i.e.

1

Hm =
∑m
i=1

1
i . We have

E [C] =
∑

16i<j6n

Prβ [Xij = 1] (10)

6
∑
i<j6k

Prβ [Xij = 1] +
∑
i6k6j

Prβ [Xij = 1] +
∑
k6i<j

Prβ [Xij = 1] (11)

=
∑
i<j6k

2

k− i+ 1
+

∑
i6k6j

2

j− i+ 1
+

∑
k6i<j

2

j− k+ 1
(12)

=
∑
i6k

2(k− i)

k− i+ 1
+

∑
i6k6j

2

j− i+ 1
+

∑
k<j

2(j− k)

j− k+ 1
(13)

6 2n+
∑
i6k6j

2

j− i+ 1
(14)

= 2n+
∑
k6j

∑
i6k

2

j− i+ 1
(15)

= 2n+ 2
∑
k<j

(Hj −Hj−k) +O (1) (16)

Observe that for a > b > 0, Ha − Hb 6 ln ab (one can prove this by showing that the function f(t) =

Ht − ln t is decreasing, or by observing that Ha −Hb is the approximation of
∫a
b
dx
x by sum of rectangles.)

Thus, the above sum is bounded from above by

2n+
∑
k6j

ln
j

j− k
+O (1) = 2n+ ln

∏
j>k j∏

j>k(j− k)
+O (1) (17)

= 2n+ 2 ln
(
n

k

)
+O (1). (18)

(19)

We can bound the last quantity using two facts which can be proved easily by induction: (i)
(
n
k

)
is

maximized when k = bn/2c; and (ii)
(
n

bn/2c
)

6 2n for all n. With these:

2n+ 2 ln
(
n

k

)
+O (1) 6 2n+ 2 ln(2n) +O (1) (20)

6 3.5n (21)

Problem 2.

1. We will analyze the version of the contraction algorithm that terminates and returns the cut (v, V\v)
whenever a vertex v of degree at most k` is found. Let P(i) denote the probability that this algorithm
will eventually return an approximate cut, given that it preserves one at step i. There are two case
at step i: either there is a vertex with degree at most k`, which means P(i) = 1, or there is no such
vertex in the graph. In the second case, the number of edges in the graph is at least k`(n−i)

2 . Thus
the probability of contracting an edge of any particular min cut is at most 2

`(n−i) . Therefore:

P(i) >

1 if there is a node of degree at most k`(

1−
2

`(n− i)

)
P(i+ 1) otherwise

(22)

2

Now note that P(0) is precisely the probability that this algorithm returns an approximate cut. We
have:

P(0) >
n−3∏
i=0

(
1−

2

`(n− i)

)
(23)

=

n∏
j=3

(
1−

2

`j

)
(24)

>
n∏
j=3

exp
(

−
2/`

j

)
(25)

= exp

−
2

`

n∑
j=3

1

j

 (26)

> exp
(

−
2

`
lnn

)
(27)

= n−2/`. (28)

where (25) follows from the fact that 1− x > e−x for all 0 6 x 6 1. The last inequality completes the
proof.

2. We give an algorithm that lists all approximate st-cuts for some fixed s and t. To list all approximate
cuts in the graph, we call this algorithm for all possible s and t. Furthermore, our algorithm is
polynomial on nM where M is the number of its outputs.

First, we arbitrarily order the vertex in V such that s is the first and t is the last vertices. Then,
associate ach vertex i with a variable xi ∈ {0, 1}. Given a set S ⊆ V and a partial assigment α to
{xi : i ∈ S}, we say that a cut C yields α if α(xi) is the indicator that i is on the same side with s in C.
Note that each cut yields a unique total assignment to {xi : i ∈ V}.

We say that an assignment is good if some approximate cut yields it. Given an assignment α for a set
S, we can check if α is good in polynomial time as follows. First, for each i ∈ S, if α(xi) = 1 then
“identify” i and s, i.e. imagine that the edge si exists and contract it; otherwise identify i and t. Then,
run a polynomial MinCut algorithm to compute the min cut of the resulting graph. If the size of this
min cut is at most k`, answer “yes”; otherwise, answer “no”. One can easily check the correctness of
this algorithm.

Now, given a partial assignment α to {x1, x2, . . . xi}, we construct all total assignments yielded by
approximate cuts which are extensions of α by the following algorithm AppCuts(α).

1. S = ∅.
2. α1 = α∪{xi+1 = 1}.

3. α0 = α∪{xi+1 = 0}.

4. If α1 is good: S = S∪AppCuts(α1).
5. If α2 is good: S = S∪AppCuts(α2).
6. Return S.

One can easily check that the correctness of this algorithm. Furthermore, AppCut(∅) returns all good
assignments. We analyze the running time of the algorithm in the following.

Consider the computation tree of the algorithm. At each node of this tree, the algorithm consider a
partial assignment α. We name this node α and say that it’s good iff α is good. Clearly, each good
node besides the leaves have two children and the bad nodes are leaves of the tree.

Furthermore, besides the root of the tree, each bad node has a good sibling; for otherwise, its parent
would have been a bad node. Thus, the number of bad nodes is at most the number of good nodes.

3

Observe that all the good nodes lie on the paths from the root to the good leaves, which correspond
to good total assignments. Since we increase the size of the partial assignment by 1 at each level, the
length of each such path is at most n. Thus, the number of good nodes is at most nM. This means
the size of the computation tree is polynomial on nM. Together with the fact that the computation
at each node is polynomial on n, this shows that the total running time is polynomial on nM.

Finally, we will prove that M is at most a polynomial of n, thus completes the proof that our algorithm
is a polynomial time one. To do so, consider the variant of the contraction algorithm where we keep
contracting until at most 2` vertices left, then output a random cut of the remaining graph. We claim
that the probability that the algorithm returns a particular cut C is at least n−2`.

Note that at any stage of the algorithm, none of the vertices has degree smaller than k, for otherwise
we would have a cut of size smaller than k, contradicting the fact that k is the size of the min cut.
Thus, the probability that an edge of C is contracted when there are i vertices left is at most |C|

ik/2 6 2`
i .

Similar to above, this means the probability that C “survives” all the contractions, i.e. none of its
edges is contracted is at least

n∏
i=2`+1

(
1−

2`

i

)
>

n∏
i=2`+1

exp
(

−
2`

i

)
(29)

= exp

(
−2`

n∑
i=2`+1

1

i

)
(30)

> exp (−2` (lnn− ln(2`))) (31)

= n−2` · (2`)2` (32)

Given that C survies all the contraction, the probability that C is returned after the last step is 2−2`,
since there are 22` cuts in a graph of 2` vertices. Therefore, the prbability that C is returned is at least

n−2` · (2`)2` · 2−2` > n−2` (33)

Since each approximate cut is returned with probability at least n−2`, the number of approximate cuts
is at most n2`. This completes the proof.

Problem 3. This problem is purely an excercise of calculations.

Problem 4.

1. When x is a vertex of the feasible region, n constrain must be tight, i.e. there is a n×n submatrix AT
of A and a subset bT of n coordinates of b such that ATx = b. Since A is non-degenerate, det(AT) 6= 0.
Thus, det(AT) ∈ {−1, 1}. By Crammer’s rule:

xi =
det(AiT)
det(AT)

(34)

where AiT is the matrix obtained by replacing the ith column of AT by bT . Since all entries of AiT are
integers, det(AiT) is an integer. Therefore, xi’s are integers.

Since an optimal solution of the integer program is a vertex of the feasible region, it is an integral
solution.

2. The linear program from Maximum Matching is as follows:

max
∑
e∈E

xe (35)

s.t.
∑
e∈E(v)

xe 6 1 ∀v ∈ V (36)

xe ∈ {0, 1} ∀e ∈ E (37)

4

where E(v) denotes the set of edges incident to v.

3. The dual of the relaxation of the above integer linear program is:

min
∑
i∈V

yi (38)

s.t. yi + yj > 1 ∀ij ∈ E (39)
yi > 0 ∀i ∈ V (40)

This linear program is a natural linear program relaxation of the minimum vertex cover problem.

4. Since G is a bipartite graph, we can partition V into two subsets L and R such that any edge of E
connects a vertex in L and a vertex in R. From now on, when we say edge ij, we assume that i ∈ L
and j ∈ R.

Rewrite the constrains of the linear program for maximum matching in the form Ax 6 b and consider
any d× d submatrix B of A. We show that det(B) ∈ {−1, 0, 1} by induction on d.

For d = 1, the assertion is immediate since each entry of A is either 1 or 0. Assume that the assertion
holds for d− 1, we prove that it holds for d. There are 3 cases:

• B contains a row of all zero’s, then det(B) = 0.

• B contains a row with at most one non-zero entry bk,l = 1 then det(B) =
∑d
h=1(−1)

k+hbk,hB
k,h =

(−1)k+lBk,l where Bk,h is the matrix obtained by removing the kth row and hth column of B.
By the induction hypothesis, det(Bk,l) ∈ {−1, 0, 1}, thus det(B) ∈ {−1, 0, 1}.

• each row of B contains at least 2 non-zero entries. Then the number of non-zero entries of B is
at least 2d. On the other hand, the number of non-zero entries on each column of B is at most
2. Thus, the number of non-zero entries of B is exactly 2d and the number of non-zero entries on
each row and on each column is exactly 2.
Let LB and RB be the set of rows of B corresponding to vertices in L and R respectively. Then
each column must contain a 1 in a row in LB and a 1 in a row in RB. Hence, the number of
non-zero entries in the rows in LB and RB are exactly d. Let u and v be the sum of all rows in LB
and RB respectively. Then ui > 1 for all i. Furthermore,

∑
ui

= d, since the number of non-zero
entries in the rows in LB is exactly d. Thus, u must be the all-1 vector. Similarly, v is the all-1
vector. This means the rows of B are linearly dependent. Hence, det(B) = 0.

Note that the coefficent matrix of the dual is AT . Thus the stated property also holds for this matrix.

Finally, both linear program are feasible, as x = 0 is a solution for the primal and y = 1 is a solution
for the dual; and bounded, as the primal is bounded from above by |E| and the dual is bounded from
below by 0. Thus, both of them has integral optimal solutions.

5. We conclude that in biparty graph, the minimum vertex cover equals to the maximum matching.

5

