CSE 521: Design and Analysis of Algorithms

Some random problems; some linear programming.

Due: May 7th, 2009.

1. Selection. [15 points]

 $\mathsf{QuickSelect}$ is the following simple randomized algorithm for finding the kth smallest element in an unsorted set S.

QuickSelect(S, k):

- 1. Pick a pivot element p uniformly at random from S.
- 2. By comparing p to each element of S, split S into two pieces: $S_1 = \{x \in S : x < p\}$ and $S_2 = \{x \in S : x > p\}.$
- 3. If $|S_1| = k 1$, then output p. If $|S_1| > k - 1$ then output QuickSelect (S_1, k) . If $|S_1| < k - 1$ then output QuickSelect $(S_2, k - |S_1| - 1)$.

Prove that the expected number of comparisons made by QuickSelect on a set S of size n is at most 3.5n. (Partial credit for proving it's at most 4n.)

2. Approximate min cuts. [15 points]

In this problem, we revisit the Contraction algorithm for computing minimum cuts, and consider its ability to find near-minimum cuts. For an integer $\ell \geq 1$, define an ℓ -approximate cut to be a cut whose size is at most ℓ times the size of the minimum cut. (We are considering unweighted, undirected graphs in this problem).

- (a) Prove that a single trial of the contraction algorithm yields as output an ℓ -approximate cut with probability at least $\Omega(n^{-2/\ell})$, where n is the number of vertices in the graph.
- (b) For each *fixed* integer $\ell \ge 1$, give a polynomial time algorithm that outputs a list of all ℓ -approximate cuts in the graph. Prove also that, in any n-vertex graph, there are at most $n^{2\ell}$ ℓ -approximate cuts.
- 3. A simplex example. [15 points]
 - (a) Solve the following linear program using the simplex method. Start with the initial solution (0,0,1). Show your intermediate steps.

Maximize $3x_2 + x_3$ subject to

(b) [Removed]

4. Integrality and matchings. [25 points]

(a) In this problem, you will identify a very useful criterion for a linear program to have an integral optimum solution. Consider an LP in standard form: Maximize $\mathbf{c} \cdot \mathbf{x}$ subject to

$$\begin{array}{rrrr} \mathsf{A} \mathbf{x} &\leq & \mathsf{b} \\ \mathbf{x} &\geq & \mathsf{0} \end{array}$$

where A is an integer matrix and b is an integer vector, but the vector c need not be integral. Suppose that the determinant of every square submatrix of A is 0,1, or -1. Prove that if the linear program is bounded and has an optimal solution, then it has an optimal solution x^* whose entries are integers.

Problem: Although you will need the full strength of the preceding assertion to finish (b)-(e), you are only required to prove that there is an integral optimal solution *when* A *is non-degenerate*, i.e. when any subset of d rows of A are linearly independent.

Hint: Use the fact that when x is a vertex of the feasible region, we have $A_T x = b_T$ where A_T is a $d \times d$ sub-matrix of A, and b_T is a subset of d coordinates from b. (Recall that we used this fact in the proof of strong duality.)

- (b) Consider the problem of computing a maximum matching in a bipartite graph. Express this as an integer linear program using a 0/1-valued variable x_e to indicate whether an edge e is picked in the matching or not.
- (c) Consider the linear programming relaxation of the above integer linear program, obtained by relaxing the constraint $x_e \in \{0, 1\}$ to $x_e \ge 0$. Write down the dual linear program of this LP relaxation. What optimization problem is the dual a natural relaxation of?
- (d) Prove, using part (a), that the linear program above for maximum matching on bipartite graphs as well as its dual both have integral optimum solutions.
- (e) What "min-max theorem" concerning bipartite graphs can you conclude using part (d)?