
cse 521: design and analysis of algorithms

Time & place

T, Th 1200-120 pm in CSE 203

People

Prof: James Lee (jrl@cs)

TA: Thach Nguyen (ncthach@cs)

Book
Algorithm Design by Kleinberg and Tardos

Grading

50% homework (approx. bi-weekly problem sets)

20% take-home midterm

30% in-class final exam

Website: http://www.cs.washington.edu/521/

something a little bit different

assume you know:

asymptotic analysis

basic probability

basic linear algebra

dynamic programming

recursion / divide-and-conquer

graph traversal (BFS, DFS, shortest paths)

so that we can cover:

nearest-neighbor search

spectral algorithms (e.g. pagerank)

online algorithms (multiplicative update)

geometric hashing

+ graph algorithms, data structures, network

flow, hashing, NP-completeness,

linear programming, approx. algorithmsdue: april 9th

case study: nearest-neighbor search

universe of objects

subset of objects forms the database

query

Goal:

Quickly respond with the database

object most similar to the query.

AAACAACTTC

CGTAAGTATA

ridiculousse

formal model

subset of objects forms the database

query

Goal:

Quickly respond with the database

object most similar to the query.

U = universe (set of objects)

d(x,y) = distance between two objects

Assumptions:

d(x,y) = d(y,x) for all x,y 2 U

(symmetry)

d(x,y) · d(x,z) + d(z,y)

for all x,y,z 2 U

(triangle inequality)

d(x,x) = 0 for all x 2 U

Problem:

Given an input database D µ U:

preprocess D (fast, space efficiently) so that queries

q 2 U can be answered very quickly, i.e. return

a* 2 D such that d(q,a*) = min { d(q, x) : x 2 D }

other considerations

subset of objects forms the database

query

Problem:

Given an input database D µ U:

preprocess D (fast, space efficiently) so that queries

q 2 U can be answered very quickly, i.e. return

a* 2 D such that d(q,a*) = min { d(q, x) : x 2 D }

Is it expensive to compute d(x,y)?

ridiculousse

Should we treat the distance function

and objects as a black box?

primitive methods

query

[Brute force: Time]

Compute d(query, x) for every

object x 2 D, and return the closest.

Takes time ¼

|D| ¢ (distance comp. time)

[Brute force: Space]

Pre-compute best response to every

possible query q 2 U.

Takes space ¼

|U| ¢ (object size)

Dream performance:
query timeO(log jDj)

O(jDj) space

something hard, something easy

something hard, something easy

something hard, something easy

All pairwise distances are equal:

d(x,y) = 1 for all x,y 2 D

0.9

1.0

1.0
1.0

1.0 1.0

Problem:

… so that queries q 2 U can be answerd quickly, i.e. return

a* 2 D such that d(q,a*) = min { d(q, x) : x 2 D }

something hard, something easy

All pairwise distances are equal:

d(x,y) = 1 for all x,y 2 D

0.9

1.0

1.0
1.0

1.0 1.0

²-Problem:

… so that queries q 2 U can be answerd quickly, i.e. return

a 2 D such that d(q,a) · (1+²) d(q,D)

Can sometimes solve exact NNS by

first finding a good approximation

something easier

Let’s suppose that U = [0,1] (real numbers between 0 and 1).

0 1

Answer: Sort the points D µ U in the preprocessing stage.
To answer a query q 2 U, we can just do binary search.

To support insertions/deletions in time, can use a BST.

(balanced search tree)

How much power did we need?

Can we do this just using distance computations d(x,y)? (for x,y 2 D)

Basic idea: Make progress by throwing “a lot” of stuff away.

extending the basic idea

Definition: The ball of radius ® around x 2 D is

®

extending the basic idea

Definition: The ball of radius ® around x 2 D is

®

2®

extending the basic idea

Definition: An ®-net in D is a subset N µ D such that

1) Separation: For all x,y 2 N, d(x,y) ¸ ®

2) Covering: For all x 2 D, d(x,N) · ®

Greedy construction algorithm:

Start with N = ;.
As long as there exists an x 2 D

with d(x,N) > ®, add x to N.

So for every ® > 0, we can construct

an ®-net N(®) in O(n2) time, where

n = |D|.

basic data structure: hierarchical nets

N(1)

N(2)

N(2i)

N(2i+1)

…

Search algorithm:

Use the ®-net to find a radius 2® ball.

Use the ®/2-net to find a radius ® ball.

Use the ®/4-net to find a radius ®/2 ball.

basic data structure: hierarchical nets

Data structure:

algorithm: traverse the nets

Data structure:

Algorithm: Given input query q 2 U,

algorithm: traverse the nets

Algorithm: Given input query q 2 U,

running time analysis?

Algorithm: Given input query q 2 U,

Query time =

Nearly uniform point set:

For u,v 2 Lx,i, d(u,v) 2 [2i-1, 2i+2]

curs’ed hamsters

All pairwise distances are equal:

d(x,y) = 1 for all x,y 2 D

0.9

1.0

1.0
1.0

1.0 1.0

intrinsic dimensionality

Given a metric space (X,d), let ¸(X,d) be the smallest constant ¸ such that

every ball in X can be covered by ¸ balls of half the radius.

r

 = 5

The intrinsic dimension of (X,d) is the value

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic

dimension of the data…

Query time =

Claim: |Lx,i| · [¸(X,d)]3

Proof: Suppose that k = |Lx,i|. Then we need at least k balls of radius

2i-2 to cover B(x,2i+1), because a ball of radius 2i-2 can cover

at most one point of Ni-1.

But now we claim that (for any r) every ball of radius r in X can be

covered by at most [¸(X,d)]3 balls of radius r/8, hence k · [¸(X,d)]3.

intrinsic dimensionality

But now we claim that (for any r) every ball of radius r in X can be

covered by at most [¸(X,d)]3 balls of radius r/8, hence k · [¸(X,d)]3.

r

A ball of radius r can be covered ¸ balls of radius r/2, hence by

¸2 balls of radius r/4, hence by

¸3 balls of radius r/8.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic

dimension of the data…

Query time =

Claim: |Lx,i| · [¸(X,d)]3

Proof: Suppose that k = |Lx,i|. Then we need at least k balls of radius

2i-2 to cover B(x,2i+1), because a ball of radius 2i-2 can cover

at most one point of Ni-1.

But now we claim that (for any r) every ball of radius r in X can be

covered by at most [¸(X,d)]3 balls of radius r/8, hence k · [¸(X,d)]3.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic

dimension of the data…

Query time =

Claim: |Lx,i| · [¸(X,d)]3

Proof: Suppose that k = |Lx,i|. Then we need at least k balls of radius

2i-2 to cover B(x,2i+1), because a ball of radius 2i-2 can cover

at most one point of Ni-1.

But now we claim that (for any r) every ball of radius r in X can be

covered by at most [¸(X,d)]3 balls of radius r/8, hence k · [¸(X,d)]3.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic

dimension of the data…

Query time =

- Generalization of binary search (where dimension = 1)

- Works in arbitrary metric spaces with small intrinsic dimension

- Didn’t have to think in order to “index” our database

- Shows that the hardest part of nearest-neighbor search is

0.9
1.0

1.0
1.0

1.0 1.0

wrap up

- Only gives approximation to the nearest neighbor

- Next time: Fix this; fix time, fix space + data structure prowess

- In the future: Opening the black box; NNS in high dimensional spaces

- Bonus: Algorithm is completely intrinsic (e.g. isomap)

