cse 521: design and analysis of algorithms

Time & place
T, Th 1200-120 pm in CSE 203

People
Prof: James Lee (jrl@cs)
TA: Thach Nguyen (ncthach@cs)

Book
Algorithm Design by Kleinberg and Tardos

Grading
50% homework (approx. bi-weekly problem sets)
20% take-home midterm
30% in-class final exam

Website: http://www.cs.washington.edu/521/

something a little bit different

assume you know:
asymptotic analysis
basic probability
basic linear algebra
dynamic programming

recursion / divide-and-conquer
graph traversal (BFS, DFS, shortest paths)

cost) betwoen X and ¥ whic
i

for computing the edit distancs (is. the minimsrn
) h runs in time O(P - [¥]). Hore, [X] denotes the leagih (mumber
of characters) in (e string X
L]
[]

o

so that we can cover:

nearest-neighbor search

spectral algorithms (e.g. pagerank)

online algorithms (multiplicative update)

geometric hashing

+ graph algorithms, data structures, network
flow, hashing, NP-completeness,
linear programming, approx. algorithms

case study: nearest-neighbor search

subset of objects forms the database

Goal:
Quickly respond with the database
object most similar to the query.

universe of objects

formal model

subset of objects forms the database Goal:

Quickly respond with the database
object most similar to the query.

U = universe (set of objects)
quez d(xy) = distance between two objects

Assumptions:
d(xx) = 0 for all x € U
d(xy) = d(y,x) for all xy € U
Problem: (symmetry)
Given an input database D C U: d(xy) < d(xz) + d(zy)
preprocess D (fast, space efficiently) so that queries for all xyz € U

q € U can be answered very quickly, i.e. return (triangle inequality)
a € D such that d(q,a) = min { d(q,x) :x € D }

other considerations

subset of objects forms the database Is it expensive to compute d(x,y)?

444°44¢

Ce O
ﬁa’ % TAAGTA:ZC L

e

[
[FEEES

&

query
@

+ o E

Should we treat the distance function

Problem: and objects as a black box?
Given an input database D C U:

preprocess D (fast, space efficiently) so that queries
q € U can be answered very quickly, i.e. return
a € D such that d(q,a’) = min { d(q,x) :x € D }

primitive methods

[Brute force: Time]
Compute d(query, x) for every
object x € D, and return the closest.

Takes time =~

|D| - (distance comp. time)

[Brute force: Space]
Pre-compute best response to every
possible query q € L.

Takes space ~
|U] - (object size)

Dream performance:

O(log |D|) query time
O(|D]) e

something hard, something easy

something hard, something easy

something hard, something easy

All pairwise distances are equal:
dxy) = 1 forallxy € D

Problem:
... so that queries ¢ € U can be answerd quickly, i.e. return
a’ € D such that d(g,a) = min { d(q,x) :x € D }

something hard, something easy

All pairwise distances are equal:
dxy) = 1 forallxy € D

e-Problem:
... so that queries ¢ € U can be answerd quickly, i.e. return

a € D such that d(q,a) < (1+€) d(q,D)

something easier

Let’s suppose that U = [0,1] (real numbers between 0 and I).

—o—o——o0—o—o B8le— 5o

0 1

Answer: Sort the points D C U in the preprocessing stage.
To answer a query q € U, we can just do binary search.

To support insertions/deletions in O(10g | D]) time, can use a BST.
(balanced search tree)

How much power did we need?
Can we do this just using distance computations d(x,y)? (for x,y € D)

Basic idea: Make progress by throwing “a lot” of stuff away.

extending the basic idea

Definition; The ball of radius o around x € D is

B(zx,a) ={y e D :d(x,y) < a}

extending the basic idea

Definition; The ball of radius o around x € D is

B(zx,a) ={y e D :d(x,y) < a}

extending the basic idea

Greedy construction algorithm:

Start with N = ().
As long as there exists an x € D
with d(x,N) > o, add x to N.

So for every av > 0, we can construct
an a-net N(a) in O(n?) time, where
n = |D|.

Definition: An cc-net in D is a subset N C D such that
1) Separation: For all xy € N, d(xy) > «
2) Covering: for all x € D, d(xN) < «

basic data structure: hierarchical nets

Search algorithm:
Use the c-net to find a radius 2¢x ball.
Use the a/2-net to find a radius o ball.
Use the cv/4-net to find a radius a:/2 ball.

basic data structure: hierarchical nets

Data structure:
dmax = max{d(z,y) : z,y € D}
dmin = min{d(z,y) 1z ZFy € D}
For i = log(dmin),109(dmin) +1,...,109(dmax),

let N; be a 2*-net.
For each z € N;, L, ; = B(z,2"T1) N N;_1.

algorithm: traverse the nets

Data structure:
dmax = max{d(x,y) : z,y € D}
dmin = Min{d(z,y) 1z #Fy € D}
For i = 10g(dmin),109(dmin) + 1,...,109(dmax),
let N; be a 2*-net.
For each z € N;, L, ; = B(z,2"T1) N N;_1.
Algorithm: Given input query q € U,
et CurrentPoint = only point of Nlog(dmax)-

For i = 10g(dmax)—1, 10g9(dmax)—2, .. ., 109(dmin),
CurrentPoint = closest point to ¢ in LCurrentPoint, i

algorithm: traverse the nets

Algorithm: Given input query q € U,
et CurrentPoint = only point of Nlog(dmax)-

For i = 10g(dmax)—1, 10g9(dmax)—2, .. ., 109(dmin),
CurrentPoint = closest point to ¢ in LCurrentPoint, i

running time analysis?

Query time = O (Iog (m)) max {\L$,i| . T € D,i}

dmin

Ly; = B(z,2TH)nN;, 4

\) -
| e
Nearly uniform point set: . -
Foruy € L, d(uy) € [2+,2*]] 4 -
Sy ..

Algorithm: Given input query q € U,
et CurrentPoint = only point of N|Og(dmax)'

For i = 10g(dmax)—1,109(dmax)—2, - - -, 109(dmin).
CurrentPoint = closest point to ¢ in LCurrentPoint, i

curs’ed hamsters

t
. - a
-l
. 7R
’
AN ran

All pairwise distances are equal:
dxy) = 1 forallxy € D

intrinsic dimensionality

Given a metric space (X,d), let A(X,d) be the smallest constant A such that
every ball in X can be covered by A balls of half the radius.

The intrinsic dimension of (X,d) is the value

dim(X,d) = log> A(X, d)

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic
dimension of the data. ..

Query time = O (Iog (m)) max{\Lm| S D,i}

dmin

Ly; = B(z,2T1)nN; 1

———

Claim: |L,;| < [A(X,d)]?

Proof: Suppose that k = | L ;|. Then we need at least k balls of radius
22 to cover B(X,2'*"), because a ball of radius 2 can cover
at most one point of N. .

But now we claim that (for any r) every ball of radius r in X can be
covered by at most [A(X,d)]’ balls of radius r/8, hence k < [A(X,d)]’.

intrinsic dimensionality

But now we claim that (for any r) every ball of radius r in X can be
covered by at most [A(X,d)]’ balls of radius r/8, hence k < [A(X,d)] .

A ball of radius r can be covered A balls of radius r/2, hence by
Al balls of radius r/4, hence by
A3 balls of radius r/8.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic
dimension of the data. ..

Query time = O (Iog (m)) max{\Lm| S D,i}

dmin

Ly; = B(z,2T1)nN; 1

———

Claim: |L,;| < [A(X,d)]?

Proof: Suppose that k = | L ;|. Then we need at least k balls of radius
22 to cover B(X,2'*"), because a ball of radius 2 can cover
at most one point of N. .

But now we claim that (for any r) every ball of radius r in X can be
covered by at most [A(X,d)]’ balls of radius r/8, hence k < [A(X,d)]’.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic
dimension of the data. ..

Query time = O (Iog (dmax)) IA(X, d)]3

——

Ly; = B(z,2T1)nN; 1

———

Claim: |L,;| < [A(X,d)]?

Proof: Suppose that k = | L ;|. Then we need at least k balls of radius
22 to cover B(X,2'*"), because a ball of radius 2 can cover
at most one point of N. .

But now we claim that (for any r) every ball of radius r in X can be
covered by at most [A(X,d)]’ balls of radius r/8, hence k < [A(X,d)]’.

intrinsic dimensionality

We can bound the query time of our algorithm in terms of the intrinsic
dimension of the data. ..

Query time = O (Iog (dmax)) IA(X, d)]3

- Generalization of binary search (where dimension = 1)

- Works in arbitrary metric spaces with small intrinsic dimension
- Didn’t have to think in order to “index” our database

- Shows that the hardest part of nearest-neighbor search Is

© &
° o v I
] -

-

. €

\ Ll 4
v

wrap up

- Only gives approximation to the nearest neighbor
- Next time: Fix this; fix time, fix space + data structure prowess
- In the future: Opening the black box; NNS in high dimensional spaces

- Bonus: Algorithm is completely intrinsic (e.g. isomap)

s P00 2o wren g R S PO
L P o, o %) o
s { .9.3'{:.\-.,;,,',0 e .,,..aq}o'o:
3 . kg ‘*‘*-\ a %
< ’, oo .-
i R Lo : oL Y
80 e spgtoha a8 B & .
; : '.‘.it-;"r-..* Vot e & o %e ot @
™ o ? & ® 0 - .
¥ 3 T VTN AR
S > e Q-
’..'&;'o P .’.:'.v ".’
*3gee, il J
"\;'..‘j_.‘..t 2
Yoi® s
R
ot
T
o
e

