
CSE 521: Design and Analysis of Algorithms Winter 2006
Problem Set #4 Instructor: Venkatesan Guruswami
Due on February 24, 2006 (Friday) 5pm (deliver to Ning’s mailbox).

Instructions: Same as for Problem Set 1.

Readings: Vanderbei’s Linear Programming Text: Chapter 2, Chapter 5 (till Section 5); Kleinberg
and Tardos, Sections 11.1, 11.3, 11.4 and 11.6.

1. (12 points)

(a) Solve the following linear program using the simplex method (show the intermediate
steps):

Maximize 3x2 + x3 subject to

x1 + 2x2 + x3 ≤ 2
2x1 + x2 − x3 ≤ −1

3x1 + 2x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

(b) Show that the variable that becomes nonbasic in one iteration of the simplex algorithm
cannot become basic in the next iteration.

2. (27 points)

(a) (8 points) In this problem, we will identify a very useful criterion for when a linear
program has an integral optimum solution. Consider a LP in standard form:
Maximize cT x subject to

Ax ≤ b

x ≥ 0

where A is an integer matrix and b is an integer vector but the vector c need not be
integral). Suppose that the determinant of every square submatrix of A is 0, 1, or −1.
Prove that if the linear program is bounded and has an optimal solution, then it has an
optimal solution x∗ whose entries are integers.
Hint: Use the fact that there is a basic optimal solution. If B, N are the basic and
nonbasic variables in such a solution, then we have the equation CBx̃B + CN x̃N = b
where C = [ A | I ] and x̃ denotes the vector that includes the slack variables as well as
x.

(b) (3 points) Consider the problem of computing a maximum matching in a bipartite graph.
Express this as an integer linear program using a 0/1-valued variable xe to indicate
whether an edge e is picked in the matching or not.



(c) (5 points) Consider the linear programming relaxation of the above integer linear pro-
gram, obtained by relaxing the constraint xe ∈ {0, 1} to xe ≥ 0. Write down the dual
linear program of this LP relaxation. What optimization problem is the dual a natural
relaxation of?

(d) (8 points) Prove, using Part (a), that the linear program above for maximum matching
on bipartite graphs as well as the its dual both have integral optimum solutions.

(e) (3 points) What “min-max theorem” concerning bipartite graphs can you conclude by
using Part (d)?

3. (9 points) For a graph G = (V, E), call a subset E′ ⊆ E to be an edge-dominating set of G if
every edge e ∈ E shares at least one its endpoints with an edge in E′ (formally, if e = (u, v),
then either u or v has an edge in E′ that is incident upon it). A minimum edge-dominating
set is an edge-dominating set with a minimum number of edges.

(a) Prove that every graph has a minimum edge-dominating set that is also a matching.

(b) Using the above, give a polynomial time algorithm that, on every graph, finds an edge-
dominating set with at most twice as many edges as the minimum edge-dominating
set.

4. (12 points) Chapter 11, Problem 12 (facility location). Consider the following problem. There
is a set U of n nodes, which we can think of as users (e.g., these are locations that need to
access a service, such as a Web server). You would like to place servers at multiple locations.
Suppose you are given a set S possible sites that would be willing to serve as locations for
the servers. For each site s ∈ S there is a fee fs ≥ 0 for placing a server at that location.
Your goal will be to approximately minimize the cost while providing the service to each of
the customers. So far this is very much like the set-cover problem: the places s are sets, the
weight of set s is fs, and we want to select a collection of sets that covers all users. There
is one extra complication: users u ∈ U can be served from multiple sites, but there is an
associated cost dus for serving user u from site s. When the value dus is very high, we do not
want to serve user u from site s; and in general the service cost dus serves as an incentive to
serve customers from “nearby” servers whenever possible.

So here is the algorithmic problem: Given the sets U , and S, and costs f and d, you need
to select a subset A ⊆ S to activate (at the cost of

∑
s∈A fs), and assign each user u to the

active server where it is cheapest to be served mins∈A dus. The goal is to minimize the overall
cost

∑
s∈A fs +

∑
u∈U mins∈A dus. Give an H(n)-approximation for this problem.

(Note that if all service costs dus are 0 or infinity, than this problem is exactly the set cover
problem: fs is the cost of the set named s, and dus is 0 if node u is in set s, and infinity
otherwise.)

Hint: Follow an approach similar to the greedy strategy for set cover. If you open a new
facility, associate it with a subset of remaining users with minimum average cost, and divide
this cost equally amongst the newly covered users. If you use an already open facility s to
cover a remaining user u, assign the cost dus to u. This ensures that the total cost is the sum
of the costs associated with all the users. Now bound this sum from above in terms of the
cost of an optimal solution using an argument similar to the one for set cover.


