
CSE 521: Design and Analysis of Algorithms
Assignment #5
February 2, 2005
Due: Wednesday, February 9

Reading Assignment: Kleinberg and Tardos, Network Flow, handout on linear
programming

Problems:

1. Your friends have written a very fast piece of maximum flow code based on
repeatedly finding augmenting paths as in Section 6.2. However, after you’ve
looked at a bit of output from it, you realize that it’s not always finding a flow
of maximum value. The bug turns out to be pretty easy to find; your friends
hadn’t really gotten into the whole backward-edge thing when writing the code,
and so their implementation builds a variant of the residual graph that only
includes the forward edges. In other words, it searches for s-t paths in a graph
G̃f consisting only of edges e for which f(e) < ce, and it terminates when
there is no augmenting path consisting entirely of such edges. We’ll call this
the “forward-edge-only” flow algorithm. (Note that we do not try to prescribe
how this algorithm chooses its forward-edge paths; it may choose them in any
fashion it wants, provided that it only terminates when no forward-edge path
exists any more.)

It’s hard to convince your friends they need to re-implement the code; in addi-
tion to its blazing speed, they claim in fact that it never returns a flow whose
value is less than a fixed fraction of optimal. Do you believe this? The crux of
their claim can be made precise in the following statement.

There is an absolute constant b > 1 (independent of the particular
input flow network), so that on every instance of the maximum flow
problem, the forward-edge-only algorithm is guaranteed to find a flow
of value at least 1/b times the maximum flow value (regardless of how
it chooses its forward-edge paths).

Decide whether you think this statement is true or false, and give a proof of
either the statement or its negation.

2. Suppose you and your friend Alanis live, together with n − 2 other people, at
a popular off-campus co-operative apartment, The Upson Collective. Over the

1



next n nights, each of you is supposed to cook dinner for the co-op exactly once,
so that someone cooks on each of the nights.

Of course, everyone has scheduling conflicts with some of the nights (e.g. prelims,
concerts, etc.) — so deciding who should cook on which night becomes a tricky
task. For concreteness, let’s label the people

{p1, . . . , pn},

the nights
{d1, . . . , dn};

and for person pi, there’s a set of nights Si ⊂ {d1, . . . , dn} when they are not
able to cook.

A feasible dinner schedule is an assignment of each person in the co-op to a
different night, so that each person cooks on exactly one night, there is someone
cooking on each night, and if pi cooks on night dj, then dj 6∈ Si.

(a) Describe a bipartite graph G so that G has a perfect matching if and only
if there is a feasible dinner schedule for the co-op.

(b) Anyway, your friend Alanis takes on the task of trying to construct a feasible
dinner schedule. After great effort, she constructs what she claims is a feasible
schedule, and heads off to class for the day.

Unfortunately, when you look at the schedule she created, you notice a big
problem. n − 2 of the people at the co-op are assigned to different nights on
which they are available: no problem there. But for the other two people —
pi and pj — and the other two days — dk and d` — you discover that she has
accidentally assigned both pi and pj to cook on night dk, and assigned no one
to cook on night d`.

You want to fix Alanis’s mistake, but without having to re-compute everything
from scratch. Show that it’s possible, using her “almost correct” schedule, to
decide in only O(n2) time whether there exists a feasible dinner schedule for the
co-op. (If one exists, you should also output it.)

3. Suppose you’re looking at a flow network G with source s and sink t, and you
want to be able to express something like the following intuitive notion: some
nodes are clearly on the “source side” of the main bottlenecks; some nodes are
clearly on the “sink side” of the main bottlenecks; and some nodes are in the
middle. However, G can have many minimum cuts, so we have to be careful in
how we try making this idea precise.

Here’s one way to divide the nodes of G into three categories of this sort.

2



• We say a node v is upstream if for all minimum s-t cuts (A, B), we have
v ∈ A — that is, v lies on the source side of every minimum cut.

• We say a node v is downstream if for all minimum s-t cuts (A, B), we have
v ∈ B — that is, v lies on the sink side of every minimum cut.

• We say a node v is central if it is neither upstream nor downstream; there
is at least one minimum s-t cut (A, B) for which v ∈ A, and at least one
minimum s-t cut (A′, B′) for which v ∈ B′.

Give an algorithm that takes a flow network G, and classifies each of its nodes as
being upstream, downstream, or central. The running time of your algorithm
should be within a constant factor of the time required to compute a single
maximum flow.

4. Some of your friends have recently graduated and started a small company called
WebExodus, which they are currently running out of their parents’ garages in
Santa Clara. They’re in the process of porting all their software from an old
system to a new, revved-up system; and they’re facing the following problem.

They have a collection of n software applications, {1, 2, . . . , n}, running on their
old system; and they’d like to port some of these to the new system. If they
move application i to the new system, they expect a net (monetary) benefit
of bi ≥ 0. The different software applications interact with one another; if
applications i and j have extensive interaction, then the company will incur
an expense if they move one of i or j to the new system but not both — let’s
denote this expense by xij ≥ 0.

So if the situation were really this simple, your friends would just port all n
applications, achieving a total benefit of

∑
i bi. Unfortunately, there’s a problem

. . .

Due to small but fundamental incompatibilities between the two systems, there’s
no way to port application 1 to the new system; it will have to remain on
the old system. Nevertheless, it might still pay off to port some of the other
applications, accruing the associated benefit and incurring the expense of the
interaction between applications on different systems.

So this is the question they pose to you: which of the remaining applications,
if any, should be moved? Give a polynomial-time algorithm to find a set S ⊆
{2, 3, . . . , n} for which the sum of the benefits minus the expenses of moving
the applications in S to the new system is maximized.

3


