
CSE 521: Design and Analysis of Algorithms
Assignment #4
January 27, 2005
Due: Wednesday, February 2

Reading Assignment: Kleinberg and Tardos, Network Flow, handout on linear
programming, section 11.6 in new book.

Problems:

1. Let G = (V, E) be a graph with n nodes in which each pair of nodes is joined by
an edge. There is a positive weight wij on each edge (i, j); and we will assume
these weights satisfy the triangle inequality wik ≤ wij+wjk. For a subset V ′ ⊆ V ,
we will use G[V ′] to denote the subgraph (with edge weights) induced on the
nodes in V ′.

We are given a set X ⊆ V of k terminals that must be connected by edges. We
say that a Steiner tree on X is a set Z so that X ⊆ Z ⊆ V , together with a
sub-tree T of G[Z]. The weight of the Steiner tree is the weight of the tree T .

Show that there is function f(·) and a polynomial function p(·) so that the
problem of finding a minimum-weight Steiner tree on X can be solved in time
O(f(k) · p(n)).

Hint: Here is Yiannis’s hint from last year. “In case you’re wondering if a
Steiner tree can contain vertices not in X, consider the following example.

“V1, V2, V3 ∈ X, form a triangle connected with edges of weight 7.

“Consider a vertex V4 in the middle, not in X, connected with the other 3 using
edges of weight 4.

“Observe the triangle inequality holds.

“The Steiner tree of minimum weight would be to select the middle edges and
not two of the triangle.

“In fact, since your graph needs to satisfy the triangle inequality, a good idea
is to think of edge weights as the distance between the vertices. Therefore,
drawing examples on scratch paper could be quite informative and give you
ideas about a solution...”

1



Additional hint: You should think about minimum spanning trees. And as with
all dynamic programming problems, you should build up the bigger solution by
solving smaller problems.

2. The problem of searching for cycles in graphs arises naturally in financial trading
applications. Consider a firm trades shares in n different companies. For each
pair i 6= j they maintain a trade ratio rij meaning that one share of i trades
for rij shares of j. Here we allow the rate r to be fractional, i.e., rij = 2

3
means

that you can trade 3 shares of i to get a 2 shares of j.

A trading cycle for a sequence of shares i1, i2, . . . , ik consists of successively
trading shares in company i1 for shares in company i2, then shares in company
i2 for shares i3, and so on, finally trading shares in ik back to shares in company
i1. After such a sequence of trades, one ends up with shares in the same company
i1 that one starts with. Trading around a cycle is usually a bad idea, as you
tend to end up with fewer shares than what you started with. But occasionally,
for short periods of time, there are opportunities to increase shares. We will
call such a cycle an opportunity cycle, if trading along the cycle increases the
number of shares. This happens exactly if the product of the ratios along the
cycle is above 1. In analyzing the state of the market, a firm engaged in trading
would like to know if there are any opportunity cycles.

Give a polynomial time algorithm that finds such an opportunity cycle, if one
exists.

3. One way to assess how “well-connected” two nodes in a directed graph are is
to look not just at the length of the shortest path between them, but also to
count the number of shortest paths.

This turns out to be a problem that can be solved efficiently, subject to some
restrictions on the edge costs. Suppose we are given a directed graph G = (V, E),
with costs on the edges; the costs may be positive or negative, but every cycle
in the graph has strictly positive cost. We are also given two nodes v, w ∈ V .
Give an efficient algorithm that computes the number of shortest v-w paths in
G. (The algorithm should not list all the paths; just the number suffices.)

4. Hidden surface removal is a problem in computer graphics that scarcely needs
an introduction — when Woody is standing in front of Buzz you should be able
to see Woody but not Buzz; when Buzz is standing in front of Woody, . . . well,
you get the idea.

The magic of hidden surface removal is that you can often compute things faster
than your intuition suggests. Here’s a clean geometric example to illustrate a

2



basic speed-up that can be achieved. You are given n non-vertical lines in the
plane, labeled L1, . . . , Ln, with the ith line specified by the equation y = aix+bi.
We will make the assumption that no three of the lines all meet at a single point.
We say line Li is uppermost at a given x-coordinate x0 if its y-coordinate at x0

is greater than the y-coordinates of all the other lines at x0: aix0 +bi > ajx0 +bj

for all j 6= i. We say line Li is visible if there is some x-coordinate at which it is
uppermost — intuitively, some portion of it can be seen if you look down from
“y = ∞.”

Give an algorithm that takes n lines as input, and in O(n log n) time returns
all of the ones that are visible. Figure 1 gives an example.

1

2

3

4

5

Figure 1: An instance with five lines (labeled “1”–“5” in the figure). All the lines
except for “2” are visible.

3


