
CSE 521: Design and Analysis of Algorithms
Assignment #2
January 12, 2005
Due: Wednesday, January 19

Reading Assignment: K&T, Section 5.1, 5.2, 5.4, 5.6, 5.7, 5.9

Questions:

1. (Kleinberg and Tardos, Chapter 4, Problem 5) Let’s consider a long,
quiet country road with houses scattered very sparsely along it. (We
can picture the road as a long line segment, with an eastern endpoint
and a western endpoint.) Further, let’s suppose that despite the bucolic
setting, the residents of all these houses are avid cell phone users. You
want to place cell phone base stations at certain points along the road,
so that every house is within 4 miles of one of the base stations.

Give an efficient algorithm that achieves this goal, using as few base
stations as possible.

2. (Kleinberg and Tardos, Chapter 4, Problem 7) Your friend is working
as a camp counselor, and he is in charge of organizing activities for a
set of junior-high-school-age campers. One of his plans is the following
minitriathalon exercise: each contestant must swim 20 laps of a pool,
then bike 10 miles, then run 3 miles. The plan is to send the contestants
out in a staggered fashion, via the following rule: the contestants must
use the pool one at a time. In other words, first one contestant swims
the 20 laps, gets out, and starts biking. As soon as this first person
is out of the pool, a second contestant begins swimming the 20 laps;
as soon as he/she’s out and starts biking, a third contestant begins
swimming ... and so on.)

Each contestant has a projected swimming time (the expected time
it will take him or her to complete the 20 laps), a projected biking
time (the expected time it will take him or her to complete the 10
miles of bicycling), and a projected running time (the time it will take
him or her to complete the 3 miles of running). Your friend wants to
decide on a schedule for the triathalon: an order in which to sequence
the starts of the contestants. Let’s say that the completion time of a
schedule is the earliest time at which all contestants will be finished
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with all three legs of the triathalon, assuming they each spend exactly
their projected swimming, biking, and running times on the three parts.
(Again, note that participants can bike and run simultaneously, but at
most one person can be in the pool at any time.) What’s the best order
for sending people out, if one wants the whole competition to be over
as early as possible? More precisely, give an efficient algorithm that
produces a schedule whose completion time is as small as possible.

3. (Kleinberg and Tardos, Chapter 4, Problem 9) One of the basic mo-
tivations behind the minimum spanning tree problem is the goal of
designing a spanning network for a set of nodes with minimum total
cost. Here, we explore another type of objective: designing a spanning
network for which the most expensive edge is as cheap as possible.

Specifically, let G = (V,E) be a connected graph with n vertices, m
edges, and positive edge weights that you may assume are all distinct.
Let T = (V, E ′) be a spanning tree of G; we define the bottleneck edge
of T to be the edge of T with the greatest weight.

A spanning tree T of G is a minimum bottleneck spanning tree if
there is no spanning tree T ′ of G with a lighter bottleneck edge.

(a) Is every minimum bottleneck tree of G a minimum spanning tree
of G? Prove or give a counter-example.

(b) Is every minimum spanning tree of G a minimum bottleneck tree
of G? Prove or give a counter-example.

4. (Kleinberg and Tardos, Chapter 4, Problem 31) Given a list of n natural
numbers d1, d2, . . . , dn, show how to decide in polynomial time whether
there exists an undirected graph G = (V,E) whose node degrees are
precisely the numbers d1, d2, . . . , dn. (That is, if V = {v1, v2, . . . , vn},
then the degree of vi should be exactly di.) G should not contain
multiple edges between the same pair of nodes, or “loop” edges with
both endpoints equal to the same node.

5. Let M = (E,F) be a matroid, and let B be the collection of bases of
M .

(a) Prove: If B1 ∈ B and B2 ∈ B and x ∈ B2 \ B1, then there is an
element y in B1 \B2 such that B1 \ {y} ∪ {x} is a basis.

(b) Prove that (E, {E \B|B ∈ B}) is a matroid.
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