
CSE 521: Design and Analysis of Algorithms
Assignment #1
January 5, 2005
Due: Wednesday, January 12

Reading Assignment: Kleinberg and Tardos, Chapters 1 and 4

Problems:

1. Gale and Shapley published their paper on the stable marriage problem in
1962; but a version of their algorithm had already been in use for ten years by
the National Resident Matching Program, for the problem of assigning medical
residents to hospitals.

Basically, the situation was the following. There were m hospitals, each with a
certain number of available positions for hiring residents. There were n med-
ical students graduating in a given year, each interested in joining one of the
hospitals. Each hospital had a ranking of the students in order of preference,
and each student had a ranking of the hospitals in order of preference. We will
assume that there were more students graduating than there were slots available
in the m hospitals.

The interest, naturally, was in finding a way of assigning each student to at
most one hospital, in such a way that all available positions in all hospitals
were filled. (Since we are assuming a surplus of students, there would be some
students who do not get assigned to any hospital.)

We say that an assignment of students to hospitals is stable if neither of the
following situations arises.

• First type of instability: There are students s and s′, and a hospital h, so
that

– s is assigned to h, and

– s′ is assigned to no hospital, and

– h prefers s′ to s.

• Second type of instability: There are students s and s′, and hospitals h

and h′, so that

– s is assigned to h, and
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– s′ is assigned to h′, and

– h prefers s′ to s, and

– s′ prefers h to h′.

So we basically have the stable marriage problem from the section, except that
(i) hospitals generally want more than one resident, and (ii) there is a surplus
of medical students.

Show that there is always a stable assignment of students to hospitals, and give
an efficient algorithm to find one.

2. The stable matching problem, as discussed in class and in the course packet,
assumes that all men and women have a fully ordered list of preferences. In this
problem we will consider a version of the problem in which men and women can
be indifferent between certain options. As before we have a set M of n men and
a set W of n women. Assume each man and each woman ranks the members
of the opposite gender — but now we allow ties in the ranking. For example
(with n = 4), a woman could say that m1 is ranked in first place; second place
is a tie between m2 and m3 (she has no preference between them); and m4 is in
last place. We will say that w prefers m to m′ if m is ranked higher than m′ on
her preference list (they are not tied).

With indifferences in the rankings there could be two natural notions for sta-
bility. And for each, we can ask about the existence of stable matchings, as
follows.

(a.) A strong instability in a perfect matching S consists of a man m and a
woman w, such that m and w prefer each other to their partners in S.
Does there always exists a perfect matching with no strong instability?
Either give an example of a set of men and women with preference lists for
which every perfect matching has a strong instability; or give an efficient
algorithm that is guaranteed to find a perfect matching with no strong
instability.

(b.) A weak instability in a perfect matching S is a man m and a woman w,
such that their partners in S are w′ and m′ respectively, and one of the
following holds:

– m prefers w to w′, and w either prefers m to m′ or is indifferent between
these two choices; or

– w prefers m to m′, and m either prefers w to w′ or is indifferent between
these two choices.
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In other words, the pairing between m and w is either preferred by both, or
preferred by one while the other is indifferent. Does there always exists a
perfect matching with no weak instability? Either give an example of a set
of men and women with preference lists for which every perfect matching
has a weak instability; or give an efficient algorithm that is guaranteed to
find a perfect matching with no weak instability.

3. There are many other settings in which we can ask questions related to some
type of “stability” principle. Here’s one, involving competition between two
enterprises.

Suppose we have two television networks; let’s call them AOL-Time-Warner-
CNN and Disney-ABC-ESPN, or A and D for short. There are n prime-time
programming slots, and each network has n TV shows. Each network wants to
devise a schedule — an assignment of each show to a distinct slot — so as to
attract as much market share as possible.

Here is the way we determine how well the two networks perform relative to
each other, given their schedules. Each show has a fixed Nielsen rating, which
is based on the number of people who watched it last year; we’ll assume that
no two shows have exactly the same rating. A network wins a given time slot
if the show that it schedules for the time slot has a larger rating than the show
the other network schedules for that time slot. The goal of each network is to
win as many time slots as possible.

Suppose in the opening week of the fall season, Network A reveals a schedule
S and Network D reveals a schedule T . On the basis of this pair of schedules,
each network wins certain time slots, according to the rule above. We’ll say that
the pair of schedules (S, T ) is stable if neither network can unilaterally change
its own schedule and win more time slots. That is, there is no schedule S ′ so
that Network A wins more slots with the pair (S ′, T ) than it did with the pair
(S, T ); and symmetrically, there is no schedule T ′ so that Network D wins more
slots with the pair (S, T ′) than it did with the pair (S, T ).

The analogue of Gale and Shapley’s question for this kind of stability is: For
every set of TV shows and ratings, is there always a stable pair of schedules?
Resolve this question by doing one of the following two things: (a) Giving an
algorithm that, for any set of TV shows and associated ratings, produces a
stable pair of schedules; or (b) Giving an example of a set of TV shows and
associated ratings for which there is no stable pair of schedules.

4. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships, and
provides service to n ports. Each of its ships has a schedule which says, for each
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day of the month, which of the ports it’s currently visiting, or whether it’s out
at sea. (You can assume the “month” here has m days, for some m > n.) Each
ship visits each port for exactly one day during the month. For safety reasons,
PSL Inc. has the following strict requirement:

(†) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this month, via the
following scheme. They want to truncate each ship’s schedule: for each ship Si,
there will be some day when it arrives in its scheduled port and simply remains
there for the rest of the month (for maintenance). This means that Si will not
visit the remaining ports on its schedule (if any) that month, but this is okay.
So the truncation of Si’s schedule will simply consist of its original schedule
up to a certain specified day on which it is in a port P ; the remainder of the
truncated schedule simply has it remain in port P .

Now the company’s question to you is the following: Given the schedule for
each ship, find a truncation of each so that condition (†) continues to hold: no
two ships are ever in the same port on the same day.

Show that such a set of truncations can always be found, and give an efficient
algorithm to find them.

Example: Suppose we have two ships and two ports, and the “month” has
four days. Suppose the first ship’s schedule is

port P1; at sea; port P2; at sea

and the second ship’s schedule is

at sea; port P1; at sea; port P2

Then the (only) way to choose truncations would be to have the first ship remain
in port P2 starting on day 3, and have the second ship remain in port P1 starting
on day 2.
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