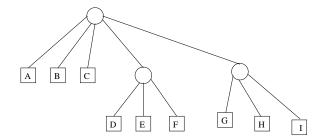
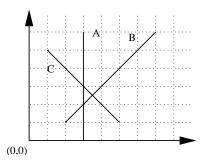

CSE 589

Final Exam December 19, 2001

- 1. (10%) Use the LZW decoding algorithm to encode the sequence ababcabd where the initial dictionary is
 - 0 a
 - 1 b
 - 2 c
 - 3 d


Show the resulting dictionary that the encoder generates.

2. (10%) Use Kruskal's algorithm to find the minimum spanning tree for the following graph. List the edges in the order they are considered for inclusion into the minimum spanning tree.



- 3. (15%) Suppose the symbols $\{a,b,c\}$ have the following probabilities,
 - a: 1/3, b: 1/6, c: 1/2.
 - (a) Design the optimal Huffman code for these symbols taken **two** at a time. That is, the symbols are grouped into aa, ab, ac, ba, bb, bc, ca, cb, cc. Show the resulting Huffman tree.
 - (b) What is its bit rate?

4. (15%) Use the PQ tree algorithm to find the restricted PQ tree that has the set $\{B,C,E,F,G\}$ contiguous. Show the steps in the algorithm pictorially.

5. (15%) Consider the following lines A = [(3,6),(3,0)], B = [(7,6),(2,1)], C = [(1,5),(5,1)] as shown below.

- (a) Give the initial event queue for the plane sweep intersection finding algorithm.
- (b) Run the plane sweep intersection finding algorithm showing the event queue and segment list at each step.

6. (10%)

- (a) Explain briefly how bit plane encoding works in modern wavelet based image compression algorithms like SPIHT, GTW, and JPEG 2000.
- (b) Briefly explain why the SPIHT image compression algorithm is a kind of group testing algorithm.

- 7. (15%) Consider the problem of finding a longest increasing subsequence of a sequence x_1, x_2, \ldots, x_n of positive numbers. We define $s_1 < s_2 < \cdots < s_k$ to be an increasing subsequence of x_1, x_2, \ldots, x_n of length k if there is a sequence $i_1 < i_2 < \cdots < i_k$ such that $s_j = x_{i_j}$ for $1 \le j \le k$. For example 2,4,5 is an increasing subsequence of 4,2,4,2,5,2 by taking the 2nd, 3th, and 5th numbers. Given x_1, x_2, \ldots, x_n and $i \ge j$, define M[i, j] to be the length of a longest increasing subsequence of x_1, x_2, \ldots, x_i that ends in x_j .
 - (a) What is the value of M[i, 1] for $1 \le i \le n$?
 - (b) For $j \leq i$ give a recursive definition of M[i,j] in terms of M[i-1,1], $M[i-1,2],\ldots,M[i-1,i-1]$.
 - (c) Briefly describe an $O(n^2)$ dynamic program to find the length of the longest increasing subsequence using (a) and (b).
 - (d) Continue your description to explain how to find the actual longest increasing subsequence.
- 8. (10%) Please answer true or false.
 - (a) The asymptotic analysis of an algorithm does not depend on the data structure used in the algorithm.
 - (b) An amortized complexity bound gives a bound on the average time per operation over a worst case sequence of operations.
 - (c) Branch-and-bound algorithms achieve a global optimum.
 - (d) Problems that on the surface seem to require an exponential search are NP-hard.
 - (e) Finding a minimum spanning tree in an undirected labeled graph is NP-hard.
 - (f) First order entropy is a lower bound on the number of bits to compress any string by an algorithm that only uses symbol frequencies and no other information.
 - (g) Image compression based on the wavelet transform suffers from blocking artifacts in compressed images.
 - (h) The SPIHT image compression algorithm does not need arithmetic coding to enhance its performance.
 - (i) The convex hull of n points in two dimensions can be found in linear time.
 - (j) Exclusion search is always faster, in order of magnitude, than dynamic programing for approximate string searching.