CSE 521: Design and Analysis of Algorithms
Assignment \#5
May 10, 2002
Due: Wednesday, May 22

Reading Assignment: All the papers I've been handing out.

Problems:

1. QuickSelect is the following simple algorithm for finding the k-th smallest element in an unsorted set S.

QuickSelect (S, k) :
(a) Pick a pivot element p uniformly at random from S.
(b) By comparing p to each element of S, split S into two pieces: $S_{1}=\{x \in S \mid x<p\}$ and $S_{2}=\{x \in S \mid x>p\}$
(c) If $\left|S_{1}\right|=k-1$ then output p

If $\left|S_{1}\right|>k-1$, then output QuickSelect $\left(S_{1}, k\right)$
If $\left|S_{1}\right|<k-1$, then output QuickSelect $\left(S_{2}, k-\left|S_{1}\right|-1\right)$
Prove the best bound you can on the expected number of comparisons made by QuickSelect on a set S of size n. You may assume that initially $k=n / 2$ (i.e., we are trying to find the median of S) which is the worst case.
2. You are watching a stream of packets go by one at a time, and want to take a random sample of k distinct packets from the stream. You face several problems:

- You only have room to save k packets at any one time.
- You do not know the total number of packets in the stream.
- If you choose not to save a packet as it goes by, it is gone forever.

Devise a scheme so that, whenever the packet stream terminates, you are left holding a subset of k packets chosen uniformly at random from the entire packet stream. If the total number of packets in the stream is less than k, you should hold all of these packets.
3. Consider adapting the basic randomized contraction algorithm (not the recursive version) to the problem of finding an $s-t$ min cut in an undirected graph. In this problem, we are given an undirected graph G together with two distinguished vertices s and t. An $s-t$ min-cut is a set of edges whose removal disconnects s from t; we seek an edge set of minimum cardinality. As the algorithm proceeds, the vertex s may get amalgamated into a new vertex as the result of an edge being contracted; we call this
vertex the s-vertex (initially s itself). Similarly, we have a t-vertex. As we run the contraction algorithm, we ensure that we never contract an edge between the s-vertex and the t-vertex.

- Show that there are graphs in which the probability that this algorithm finds an $s-t$ min-cut is exponentially small.
- How large can the number of $s-t$ min-cuts in an instance be?

4. Give a Monte Carlo algorithm that finds the second smallest cut in an undirected graph in $O\left(n^{2} \log ^{3} n\right)$ time with high probability. (If a graph has two distinct minimum cuts, the second smallest cut is a minimum cut.)
5. Explain as best you can the following design decisions from the linear time randomized minimum spanning tree algorithm:

- the decision to do two Boruvka steps at the beginning (as opposed to say 0,1 or more than 2 Boruvka steps).
- the decision to sample half the edges as opposed to a fraction p of the edges for some choice of $p \neq 1 / 2$.

