
CSE 521: Design and Analysis of Algorithms
Assignment #3
April 19, 2002
Due: Friday, April 26

Reading Assignment: Kleinberg and Tardos, Chapters 5 and 6

Problems:

1. Suppose it’s nearing the end of the quarter and you’re taking n courses, each with a
final project that still has to be done. Each project will be graded on the following
scale: it will be assigned an integer number on a scale of 1 to g > 1, higher numbers
being better grades. Your goal, of course, is to maximize your average grade on the n

projects.

Now, you have a total of H > n hours in which to work on the n projects cumulatively,
and you want to decide how to divide up this time. For simplicity, assume H is a
positive integer, and you’ll spend an integer number of hours on each project. So as
to figure out how best to divide up your time, you’ve come up with a set of functions
{fi : i = 1, 2, . . . , n} (rough estimates, of course) for each of your n courses; if you
spend h ≤ H hours on the project for course i, you’ll get a grade of fi(h). (You may
assume that the functions fi are non-decreasing: if h < h′ then fi(h) ≤ fi(h

′).)

So the problem is: given these functions {fi}, decide how many hours to spend on each
project (in integer values only) so that your average grade, as computed according
to the fi, is as large as possible. In order to be efficient, the running time of your
algorithm should be polynomial in n, g, and H; none of these quantities should appear
as an exponent in your running time.

2. Consider the Bellman-Ford minimum-cost path algorithm from the text, assuming
that the graph has no negative cost cycles. This algorithm is both fairly slow and also
memory-intensive. In many applications of dynamic programming, the large mem-
ory requirements can become a bigger problem than the running time. The goal of
this problem is to decrease the memory requirement. The pseudo-code Shortest-

Path(G, s, t) in the text maintains an array M [0...n − 1; V] of size n2, where n = |V |
is the number of nodes on the graph.

Notice that the values of M [i, v] are computed only using M [i − 1, w] for some nodes
w ∈ V . This suggests he following idea: can we decrease the memory needs of the
algorithm to O(n) by maintaining only two columns of the M matrix at any time?
Thus we will “collapse” the array M to an 2 × n array B: as the algorithm iterates
through values of i, B[0, v] will hold the “previous” column’s value M [i − 1, v], and
B[1, v] will hold the “current” column’s value M [i, v].

Space-Efficient-Shortest-Path(G, s, t)

1

n = number of nodes in G

Array B[0 . . . 1, V]
For v ∈ V in any order

B[0, v] = ∞
Endfor

B[0, s] = 0
For i = 1, . . . , n− 1

For v ∈ V in any order

M = B[0, v]
M ′ = min

w∈V :(w,v)∈E
(B[0, w] + cwv)

B[1, v] = min(M, M ′)
Endfor

For v ∈ V in any order

B[0, v] = B[1, v]
Endfor

Endfor

Return B[1, t]

It is easy to verify that when this algorithm completes, the array entry B[1, v] holds
the value of OPT (n − 1, v), the minimum-cost of a path from s to v using at most
n− 1 edges, for all v ∈ V . Moreover, it uses O(n3) time and only O(n) space. You do
not need to prove these facts.

The problem is: where is the shortest path? The usual way to find the path involves
tracing back through the M [i, v] values, using the whole matrix M , and we no longer
have that. The goal of this problem is to show that if the graph has no negative cycles,
then there is enough information saved in the last column of the matrix M , to recover
the shortest path in O(n2) time.

Assume G has no negative or even zero length cycles. Give an algorithm Find-

Path(t, G, B) that uses only the array B (and the graph G) to find the the minimum-
cost path from s to t in O(n2) time.

3. As most of us don’t know, there are many sunny days in Ithaca, NY; but this year, as
it happens, the spring ROTC picnic at Cornell has fallen on rainy day. The ranking
officer decides to postpone the picnic, and must notify everyone by phone. Here is the
mechanism she uses to do this.

Each ROTC person on campus except the ranking officer reports to a unique superior

officer. Thus, the reporting hierarchy can be described by a tree T , rooted at the
ranking officer, in which each other node v has as a parent node u equal to his or her
superior officer. Conversely, we will call v a direct subordinate of u. See Figure 1, in
which A is the ranking officer, B and D are the direct subordinates of A, and C is the
direct subordinate of B.

To notify everyone of the postponement, the ranking officer first calls each of her direct
subordinates, one at a time. As soon as each subordinate gets the phone call, he or she

2

must notify each of his or her direct subordinates one at a time. The process continues
this way, until everyone has been notified. Note that each person in this process can
only call direct subordinates on the phone; for example, in Figure 1, A would not be
allowed to call C.

Now, we can picture this process as being divided into rounds: In one round, each
person who has already learned of the postponement can call one of his or her direct
subordinates on the phone. The number of rounds it takes for everyone to be notified
depends on the sequence in which each person calls their direct subordinates. For
example, in Figure 1, it will take only two rounds if A starts by calling B, but it will
take three rounds if A starts by calling D.

Give an efficient algorithm that determines the minimum number of rounds needed
for everyone to be notified, and outputs a sequence of phone calls that achieves this
minimum number of rounds.

A

B D

C

Figure 1: A hierarchy with four people. The fastest broadcast scheme is for A to call B in
the first round. In the second round, A calls D and B calls C. If A were to call D first, then
C could not learn the news until the third round.

4. Let G = (V, E) be a graph with n nodes in which each pair of nodes is joined by
an edge. There is a positive weight wij on each edge (i, j); and we will assume these
weights satisfy the triangle inequality wik ≤ wij + wjk. For a subset V ′ ⊆ V , we will
use G[V ′] to denote the subgraph (with edge weights) induced on the nodes in V ′.

We are given a set X ⊆ V of k terminals that must be connected by edges. We say
that a Steiner tree on X is a set Z so that X ⊆ Z ⊆ V , together with a sub-tree T of
G[Z]. The weight of the Steiner tree is the weight of the tree T .

Show that there is function f(·) and a polynomial function p(·) so that the problem of
finding a minimum-weight Steiner tree on X can be solved in time O(f(k) · p(n)). The
function f(·) can be exponential in k.

Hint: Define Yi to be X ∪ i for every vertex i such that i is not in X. Consider the
problem of finding a minimum-weight Steiner tree on every subset of the Yi’s (for each
of the n− k Yi’s).

5. Extra Credit: Give feedback on chapters 5 and 6 of book. Send this by email to
Anna and Gideon.

3

