CSE 517

Natural Language Processing Winter 2019

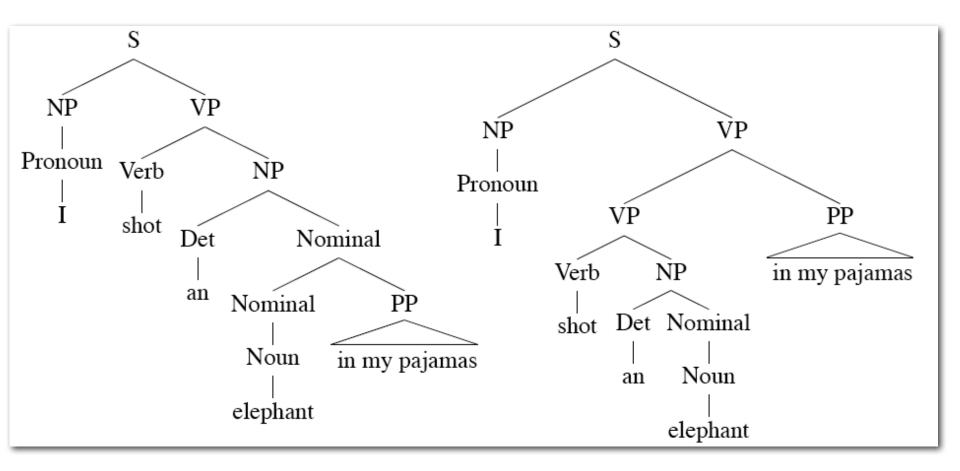
Parsing (Trees)

Yejin Choi - University of Washington

[Slides from Dan Klein, Michael Collins, Luke Zettlemoyer and Ray Mooney]

Ambiguities

I shot [an elephant] [in my pajamas]



Examples from J&M

Syntactic Ambiguities I

- Prepositional phrases: They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition: The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective Visiting relatives can be boring. Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions The chicken is ready to eat. The contractors are rich enough to sue.
- Coordination scope:

Small rats and mice can squeeze into holes or cracks in the wall.

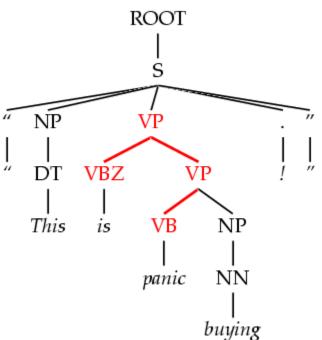
Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

"This will panic buyers !"

- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this



Probabilistic Context Free Grammars

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple <*N*, Σ, *S*, *R*>
 - *N* : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
 - Σ : the set of terminals (the words)
 - S : the start symbol
 - Often written as ROOT or TOP
 - *Not* usually the sentence non-terminal S
 - *R* : the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_n$, with $X \in N$, $n \ge 0$, $Y_i \in (N \cup \Sigma)$
 - Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$
- A PCFG adds a distribution q:
 - Probability q(r) for each $r \in R$, such that for all $X \in N$:

$$\sum_{\alpha \to \beta \in R: \alpha = X} q(\alpha \to \beta) = 1$$

PCFG Example

C		NP	VP	10	Vi	\Rightarrow	sleeps	1.0
S LID	\Rightarrow		VP	1.0	Vt	\Rightarrow	saw	1.0
VP	\Rightarrow	Vi		0.4	NN	\Rightarrow	man	0.7
VP	\Rightarrow	Vt	NP	0.4	NIN		woman	0.2
VP	\Rightarrow	VP	PP	0.2				
NP	\Rightarrow	DT	NN	0.3	ININ	\Rightarrow	telescope	0.1
NP	\Rightarrow	NP	PP	0.7	DT	\Rightarrow	the	1.0
PP	\rightarrow		NP		IN	\Rightarrow	with	0.5
PP	\Rightarrow	r	INP	0.1	IN	\Rightarrow	in	0.5

• Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is

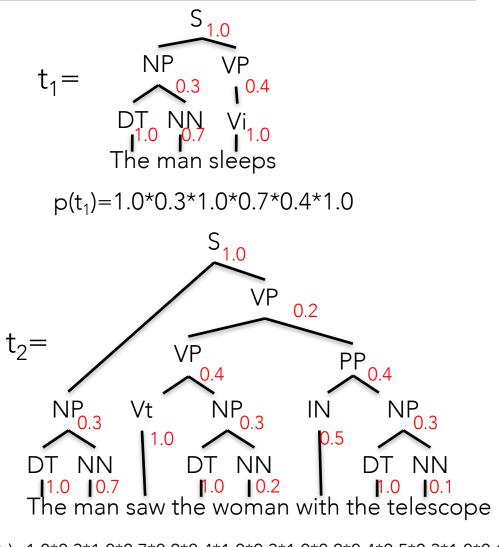
$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

where $q(\alpha \rightarrow \beta)$ is the probability for rule $\alpha \rightarrow \beta$.

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5



 $p(t_s) = 1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1$

PCFGs: Learning and Inference

Model

• The probability of a tree t with n rules $\alpha_i \rightarrow \beta_i$, i = 1..n

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

Learning

 Read the rules off of labeled sentences, use ML estimates for probabilities

$$q_{ML}(\alpha \to \beta) = \frac{\operatorname{Count}(\alpha \to \beta)}{\operatorname{Count}(\alpha)}$$

and use all of our standard smoothing tricks!

Inference

 For input sentence s, define T(s) to be the set of trees whole yield is s (whole leaves, read left to right, match the words in s)

$$t^*(s) = \arg \max_{t \in \mathcal{T}(s)} p(t)$$

Dynamic Programming

 We will store: score of the max parse of x_i to x_j with root non-terminal X

$$\pi(i, j, X)$$

• So we can compute the most likely parse:

$$\pi(1, n, S) = \max_{t \in \mathcal{T}_G(s)} p(t)$$

• Via the recursion:

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

• With base case:

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

The CKY Algorithm

- Input: a sentence s = x₁ .. x_n and a PCFG = <N, Σ, S, R, q>
- Initialization: For i = 1 ... n and all X in N

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

• For I = 1 ... (n-1)

[iterate all phrase lengths]

For i = 1 ... (n-l) and j = i+l [iterate all phrases of length l]
 For all X in N [iterate all non-terminals]

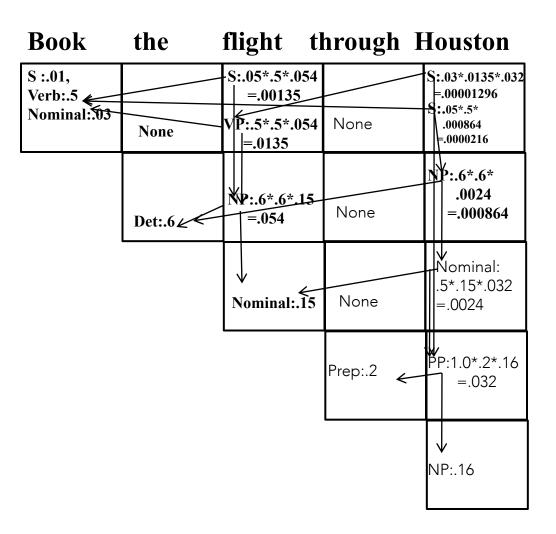
$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

also, store back pointers

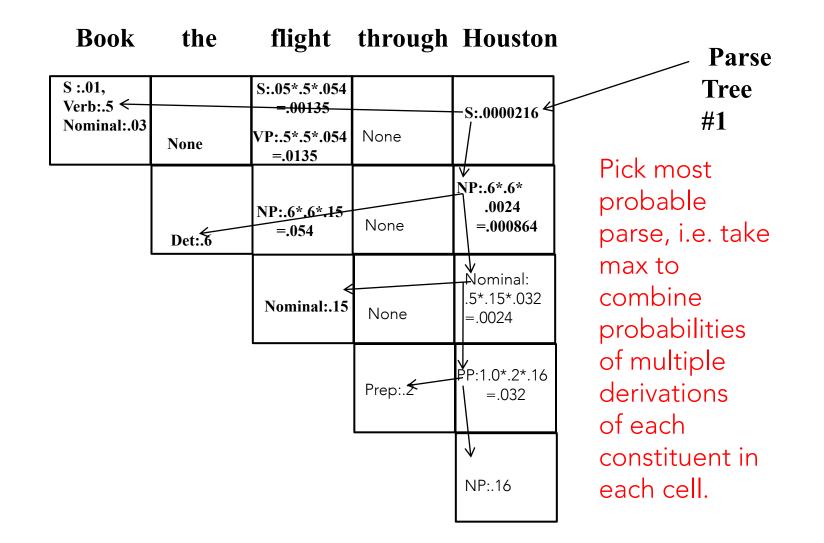
$$bp(i, j, X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} \left(q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z) \right)$$

Probabilistic CKY Parser

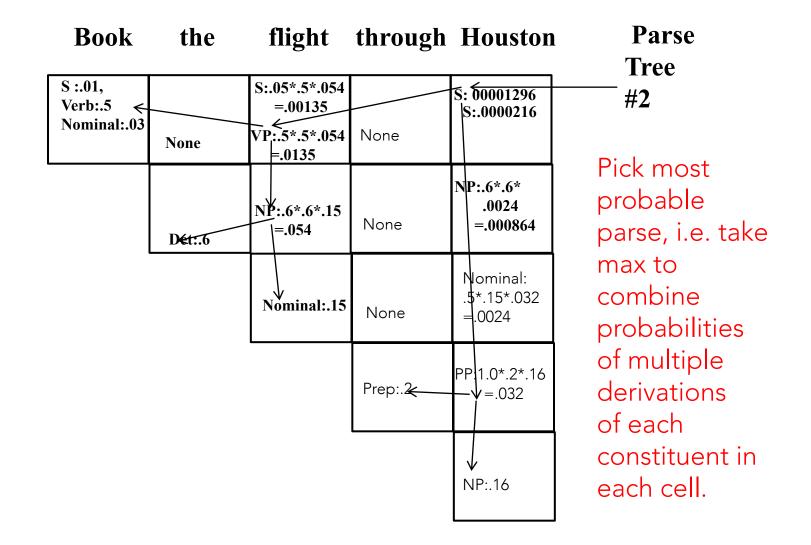
0.8 $S \rightarrow NP VP$ 0.1 $S \rightarrow X1 VP$ 1.0 $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ 0.01 0.004 0.006 0.05 $S \rightarrow Verb NP$ 0.03 $S \rightarrow VP PP$ $NP \rightarrow I$ | he | she | me 0.1 0.02 0.02 0.06 $NP \rightarrow Houston \mid NWA$ 0.16 .04 Det \rightarrow the | a | an 0.6 0.1 0.05 0.6 $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight | meal | money 0.03 0.15 0.06 0.06 0.2 Nominal \rightarrow Nominal Nominal 0.5 Nominal \rightarrow Nominal PP Verb→ book | include | prefer 0.5 0.04 0.06 0.5 $VP \rightarrow Verb NP$ 0.3 $VP \rightarrow VP PP$ **Prep** \rightarrow through | to | from 0.3 0.3 0.2 1.0 $PP \rightarrow Prep NP$



Probabilistic CKY Parser



Probabilistic CKY Parser



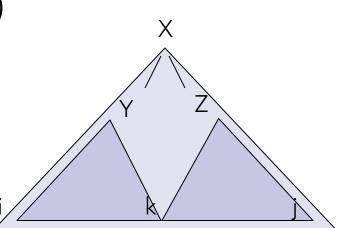
Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: |symbols|*n²
- Pruning: Beam Search
 - score[X][i][j] can get too large (when?)
 - Can keep beams (truncated maps score[i][j]) which only store the best K scores for the span [i,j]
- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most X[i,j]
 - Much more on this later...

Time: Theory

How much time will it take to parse?

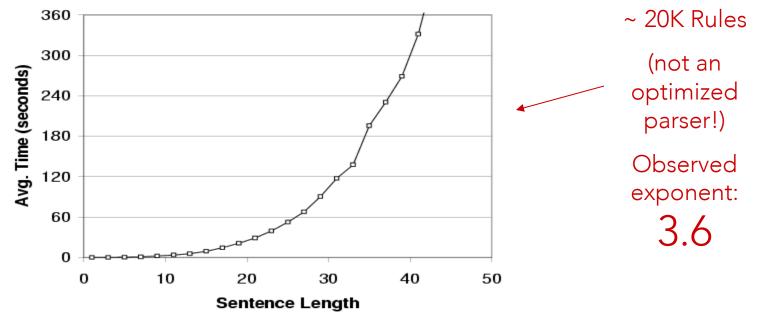
- For each diff (:= j i) (<= n)
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point k
 Do constant work



- Total time: |rules|*n³
- Something like 5 sec for an unoptimized parse of a 20-word sentences

Time: Practice

Parsing with the vanilla treebank grammar:

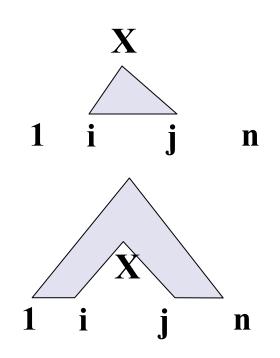


- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

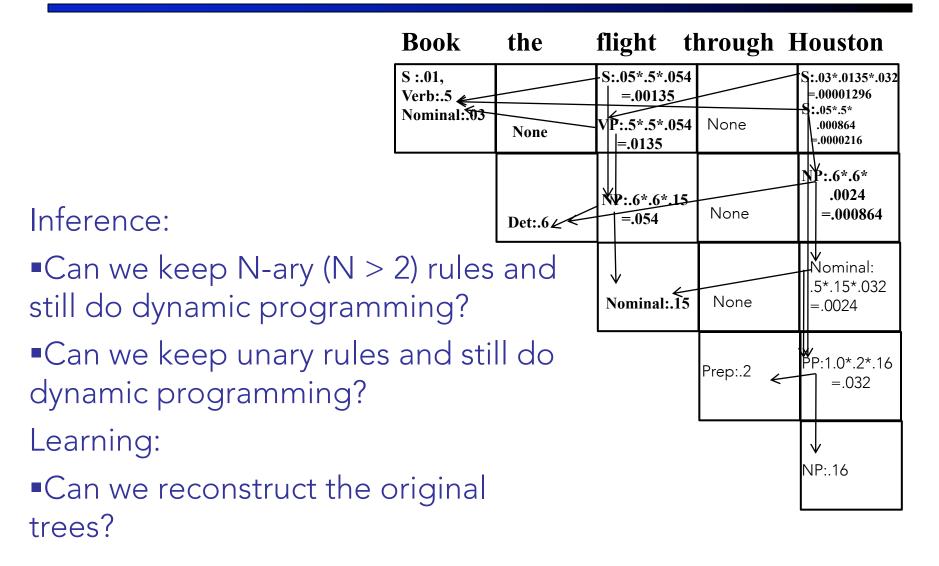
Other Dynamic Programs

Can also compute other quantities:

- Best Inside: score of the max parse of w_i to w_j with root non-terminal X
- Best Outside: score of the max parse of w₀ to w_n with a gap from w_i to w_i rooted with non-terminal X
 - see notes for derivation, it is a bit more complicated
- Sum Inside/Outside: Do sums instead of maxes



Why Chomsky Normal Form?

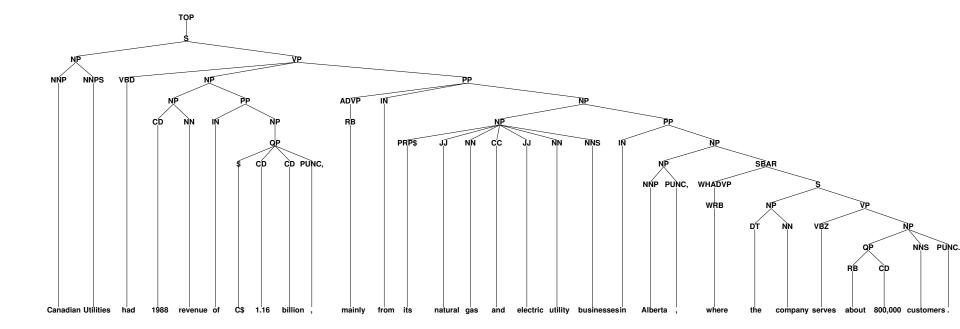


Treebanks

The Penn Treebank: Size

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

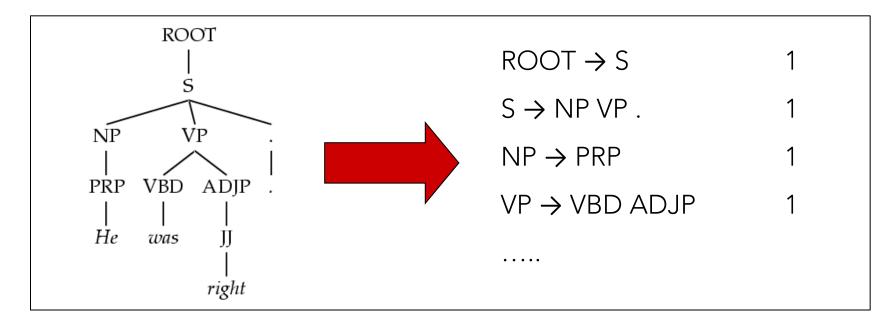


Penn Treebank Non-terminals

Table 1.2.	The Penn Treebank syntactic tagset	
ADJP	Adjective phrase	
ADVP	Adverb phrase	
NP	Noun phrase	
PP	Prepositional phrase	
S	Simple declarative clause	
SBAR	Subordinate clause	
SBARQ	Direct question introduced	by <i>wh</i> -element
SINV	Declarative sentence with	subject-aux inversion
SQ	Yes/no questions and subco	onstituent of SBARQ excluding <i>wh</i> -element
VP	Verb phrase	
WHADVP	Wh-adverb phrase	
WHNP	Wh-noun phrase	
WHPP	Wh-prepositional phrase	
Х	Constituent of unknown or	uncertain category
*	"Understood" subject of in	finitive or imperative
0	Zero variant of <i>that</i> in sub-	ordinate clauses
Т	Trace of wh-Constituent	

Treebank Grammars

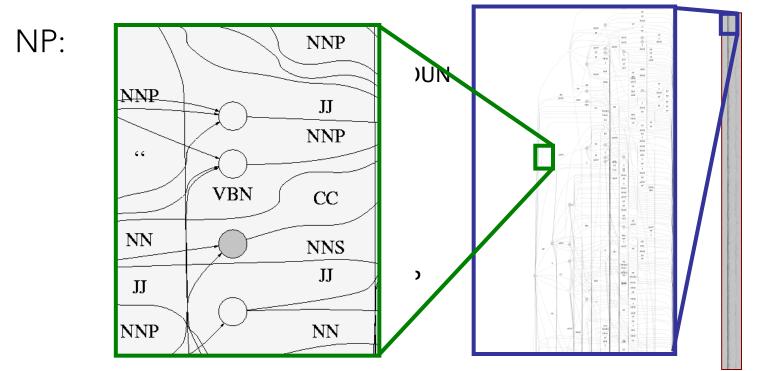
- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

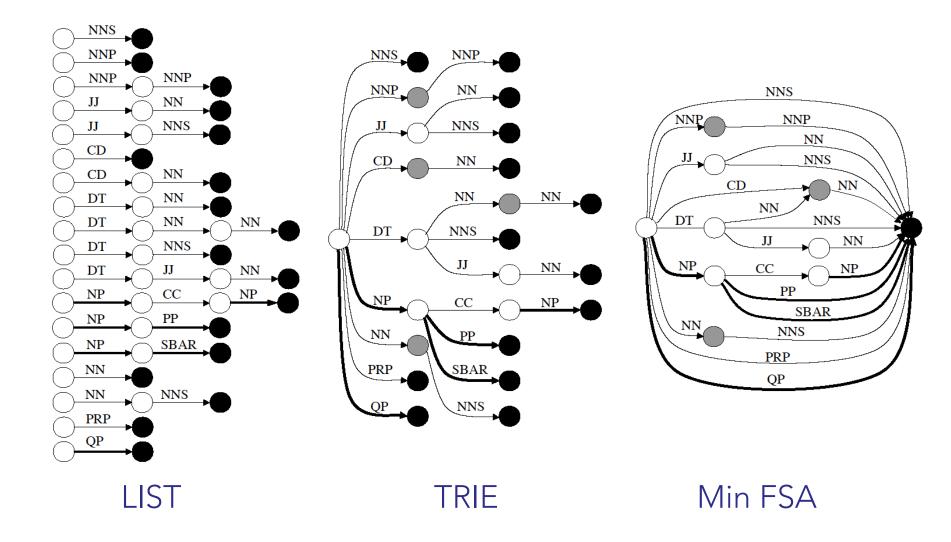


- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.

Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller





Grammar encodings: Non-black states are active, non-white states are accepting, and bold transitions are phrasal. FSAs for a subset of the rules for the category NP.

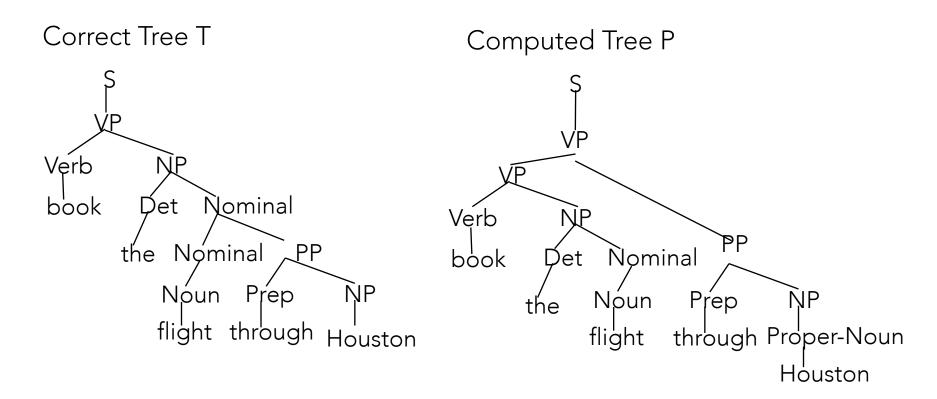
Typical Experimental Setup

Corpus: Penn Treebank, WSJ

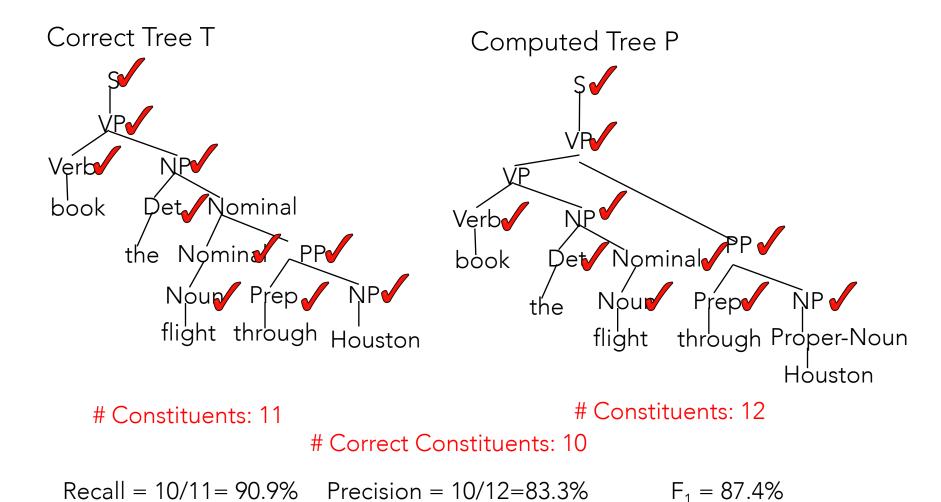
Training:	sections	02-21
Development: Test:	section section	22 (here, first 20 files) 23

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP \rightarrow NP CC •

How to Evaluate?



PARSEVAL Example

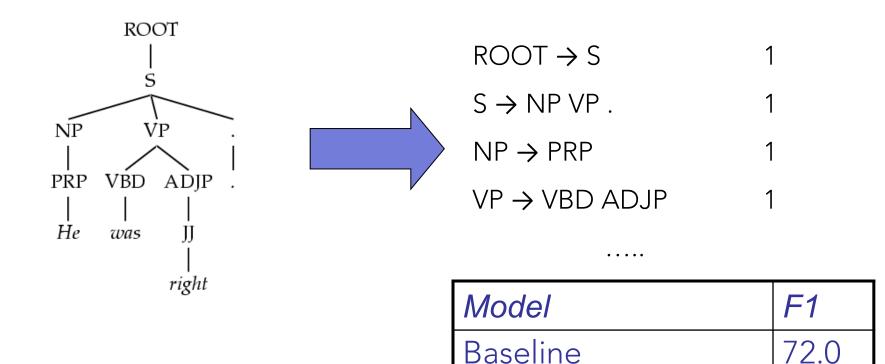


Evaluation Metric

- PARSEVAL metrics measure the fraction of the constituents that match between the computed and human parse trees. If P is the system's parse tree and T is the human parse tree (the "gold standard"):
 - Recall = (# correct constituents in P) / (# constituents in T)
 - Precision = (# correct constituents in P) / (# constituents in P)
- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.
- F1 is the harmonic mean of precision and recall.
 - F1= (2 * Precision * Recall) / (Precision + Recall)

Performance with Vanilla PCFGs

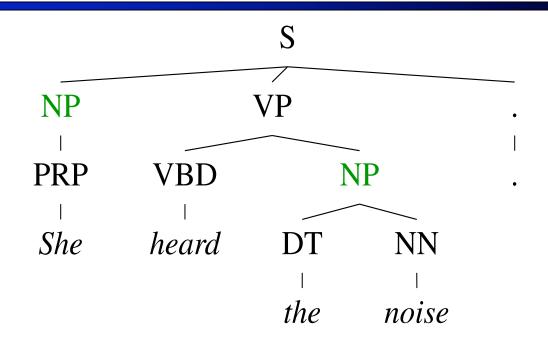
- Use PCFGs for broad coverage parsing
- Take the grammar right off the trees



[Charniak 96]

Grammar Refinements 1. Markovization

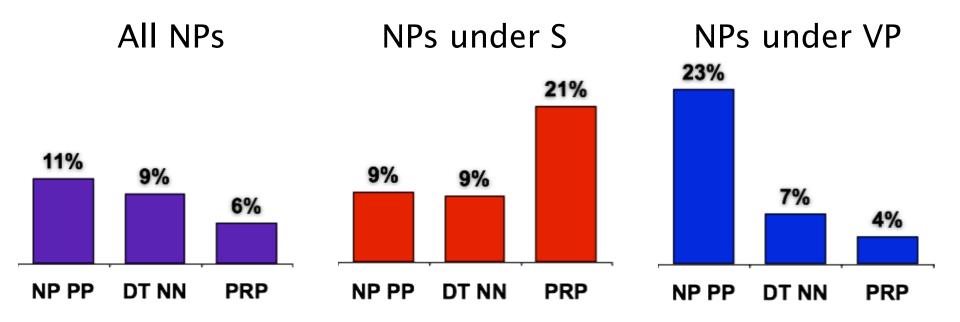
Conditional Independence?



- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

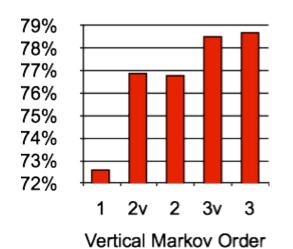
Independence assumptions are often too strong.

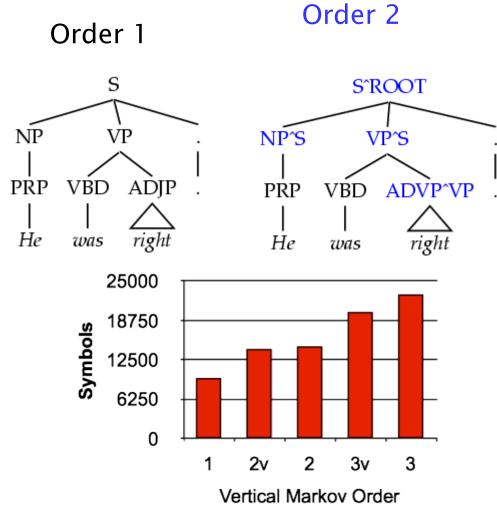


- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

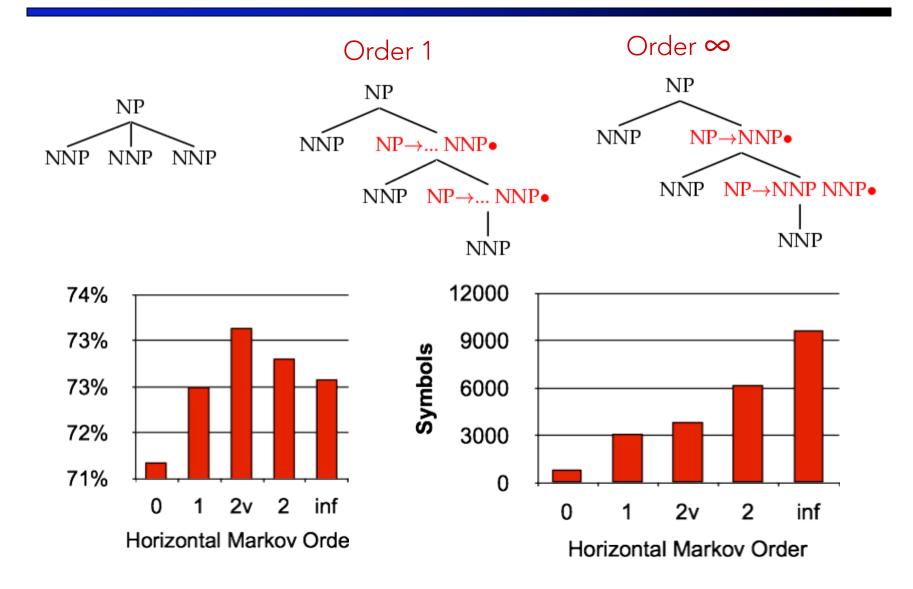
Vertical Markovization

 Vertical Markov order: rewrites
 depend on past k ancestor nodes.
 (cf. parent annotation)

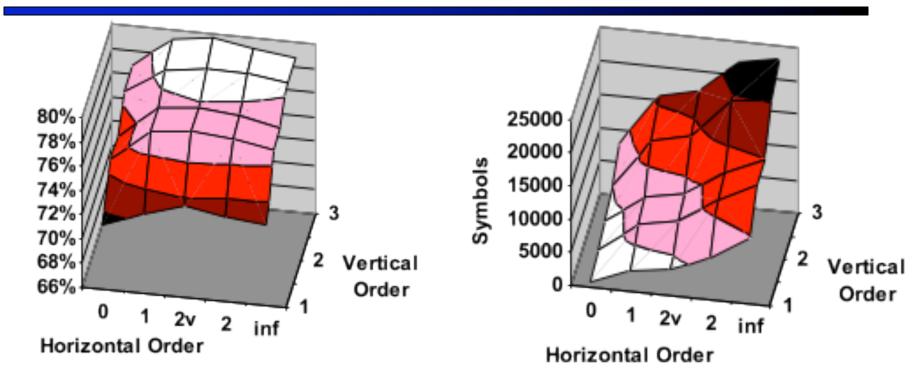




Horizontal Markovization



Vertical and Horizontal



Model	F1	Size
v=h=2v	77.8	7.5K

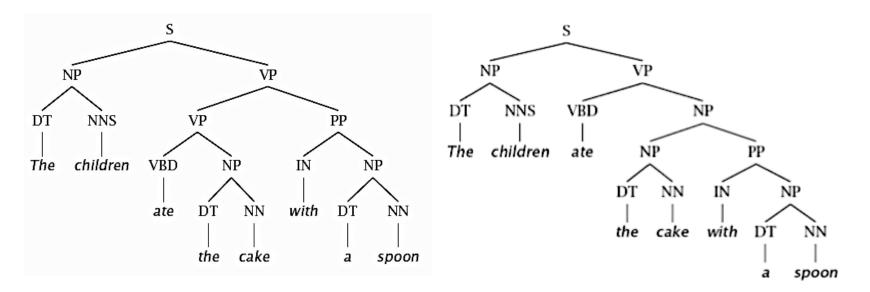
Unlexicalized PCFG Grammar Size

		Horizontal Markov Order				
Vei	rtical Order	$h = 0$ $h = 1$ $h \le 2$ $h = 2$ $h = c$			$h = \infty$	
v = 1	No annotation	71.27	72.5	73.46	72.96	72.62
		(854)	(3119)	(3863)	(6207)	(9657)
$v \leq 2$	Sel. Parents	74.75	77.42	77.77	77.50	76.91
		(2285)	(6564)	(7619)	(11398)	(14247)
v = 2	All Parents	74.68	77.42	77.81	77.50	76.81
		(2984)	(7312)	(8367)	(12132)	(14666)
$v \leq 3$	Sel. GParents	76.50	78.59	79.07	78.97	78.54
		(4943)	(12374)	(13627)	(19545)	(20123)
v = 3	All GParents	76.74	79.18	79.74	79.07	78.72
		(7797)	(15740)	(16994)	(22886)	(22002)

Figure 2: Markovizations: F₁ and grammar sizę.

Grammar Refinements 2. Lexicalization

Problems with PCFGs

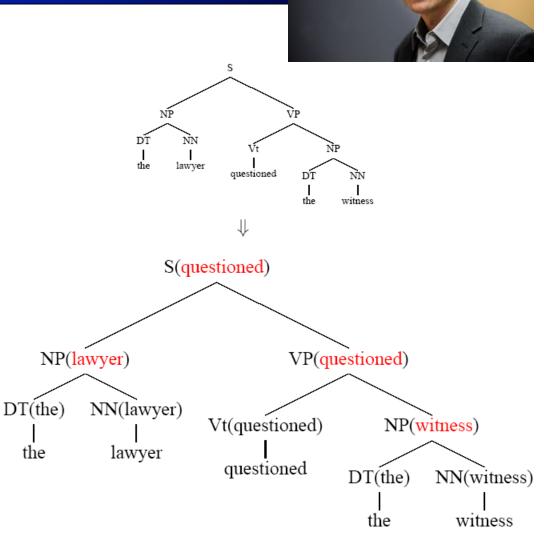


- These trees differ only in one rule:
 - $VP \rightarrow VP PP$
 - NP \rightarrow NP PP

Lexicalization allows us to be sensitive to specific words

Lexicalize Trees!

- Headship not in (most) treebanks
- Usually use (handwritten) head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child



Lexicalized PCFGs?

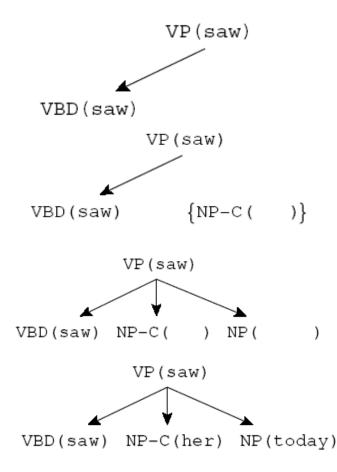
Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

[Collins 99] Lexical Derivation Steps

 Main idea: define a linguistically-motivated Markov process for generating children given the parent



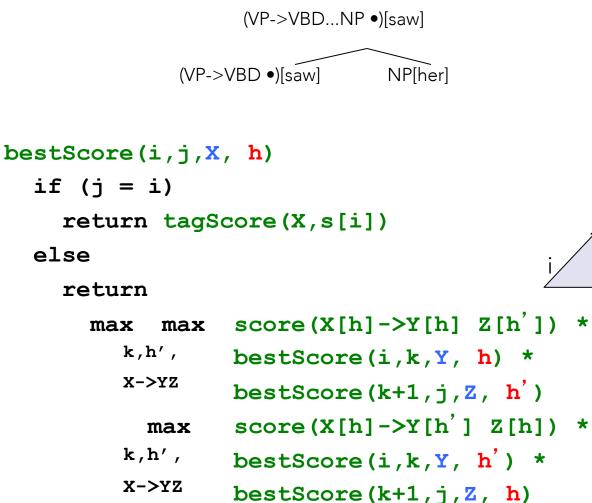
Step 1: Choose a head tag and word

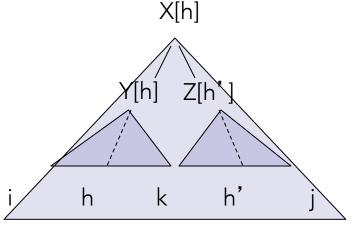
Step 2: Choose a complement bag

Step 3: Generate children (incl. adjuncts)

Step 4: Recursively derive children

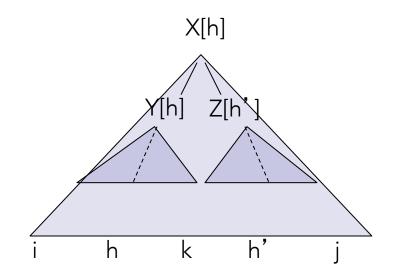
Lexicalized CKY





Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic
- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)



Model	F1
Naïve Treebank	72.6
Grammar	
Klein &	86.3
Manning '03	
Collins 99	88.6

Grammar Refinements 3. Using Latent Sub-categories

Manual Annotation

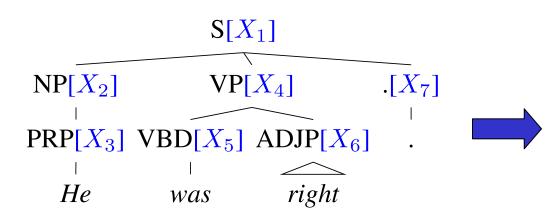
S Manually split categories NP VP NP: subject vs object PRP RD ADIP DT: determiners vs demonstratives He right was IN: sentential vs prepositional Advantages: Fairly compact grammar S^{ROOT} Linguistic motivations NP^S-PRP VP^S-BE Disadvantages: PRP-Z BD-BE AD.IP^{VP} Performance leveled out He right was Manually annotated

 S

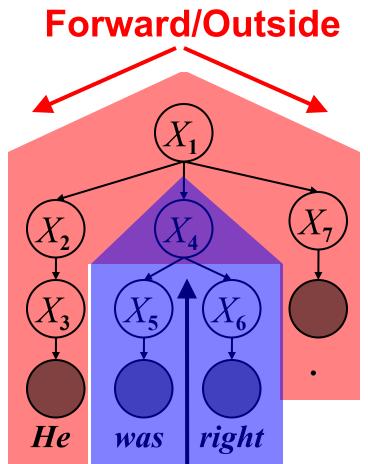
Learning Latent Annotations

Latent Annotations:

- Brackets are known
- Base categories are known
- Hidden variables for subcategories



Can learn with EM: like Forward-Backward for HMMs.



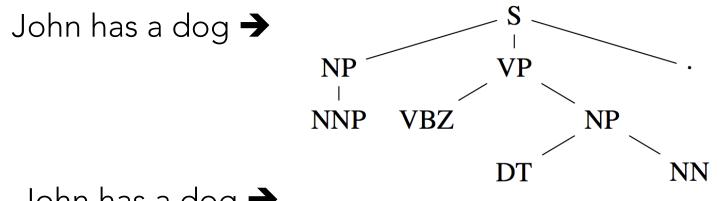
Backward/Inside

Final Results

	F1 ≤ 40 words	F1 all words
Parser	≤ 40 W0/US	all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
Collins '99	88.6	88.2
Charniak & Johnson '05	90.1	89.6
Petrov et. al. 06	90.2	89.7

"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015



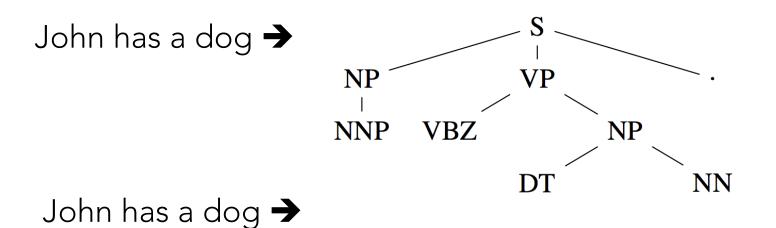
John has a dog →

(S (NP NNP)_{\rm NP} (VP VBZ (NP DT NN)_{\rm NP})_{\rm VP} .) $_{\rm S}$

- Linearize a tree into a sequence
- Then parsing problem becomes similar to machine translation
 - Input: sequence
 - Output: sequence (of different length)
- Encoder-decoder LSTMs (Long short-term memory networks)

"Grammar as Foreign Language" (deep learning)

Vinyals et al., 2015



(S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP} .)_S

- Penn treebank (~40K sentences) is too small to train LSTMs
- Create a larger training set with 11M sentences automatically parsed by two state-of-the-art parsers (and keep only those sentences for which two parsers agreed)

"Grammar as Foreign Language" (deep learning)

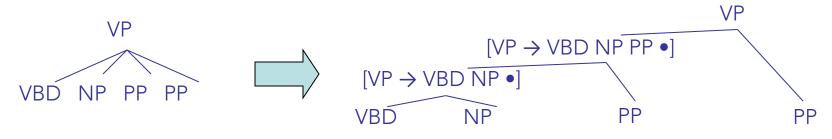
Vinyals et al., 2015

Parser	Training Set	WSJ 22	WSJ 23
baseline LSTM+D	WSJ only	< 70	< 70
LSTM+A+D	WSJ only	88.7	88.3
LSTM+A+D ensemble	WSJ only	90.7	90.5
baseline LSTM	BerkeleyParser corpus	91.0	90.5
LSTM+A	high-confidence corpus	93.3	92.5
LSTM+A ensemble	high-confidence corpus	93.5	92.8
Petrov et al. (2006) [12]	WSJ only	91.1	90.4
Zhu et al. (2013) [13]	WSJ only	N/A	90.4
Petrov et al. (2010) ensemble [14]	WSJ only	92.5	91.8
Zhu et al. (2013) [13]	semi-supervised	N/A	91.3
Huang & Harper (2009) [15]	semi-supervised	N/A	91.3
McClosky et al. (2006) [16]	semi-supervised	92.4	92.1
Huang & Harper (2010) ensemble [17]	semi-supervised	92.8	92.4

Supplementary Topics I. CNF Conversion

Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals



- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

Original Grammar

$S \rightarrow NP VP$ S $\rightarrow Aux NP VP$	0.8 0.1	CNF Conversion
$S \rightarrow VP$	0.1	Example
NP \rightarrow Pronoun	0.2	
NP \rightarrow Proper-Noun	0.2	
NP → Det Nominal Nominal → Noun	0.6 0.3	
Nominal → Nominal Noun Nominal → Nominal PP VP → Verb	0.2 0.5 0.2	Det \rightarrow the a that this 0.6 0.2 0.1 0.1
VP → Verb NP VP → VP PP PP → Prep NP	0.5 0.3 1.0	Pronoun → I he she me 0.5 0.1 0.1 0.3 Proper-Noun → Houston NWA
Lexicon: Noun → book flight meal 0.1 0.5 0.2 0 Verb → book include prefe 0.5 0.2 0.3	.2	0.8 0.2 Aux → does 1.0 Prep → from to on near through 0.25 0.25 0.1 0.2 0.2

Original Grammar		Chomsky Normal Form	
$S \rightarrow NP VP$ $S \rightarrow Aux NP VP$	0.8 0.1	$S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$	0.8 0.1 1.0
$S \rightarrow VP$	0.1		
$NP \rightarrow Pronoun$	0.2		
$NP \rightarrow Proper-Noun$	0.2		
NP → Det Nominal Nominal → Noun	0.6 0.3		
Nominal → Nominal Noun Nominal → Nominal PP VP → Verb	0.2 0.5 0.2		
VP → Verb NP VP → VP PP PP → Prep NP	0.5 0.3 1.0		
Lexicon (See previous slide fo Noun → book flight meal 0.1 0.5 0.2 0 Verb → book include prefe 0.5 0.2 0.3	money .2		

Original Grammar

Chomsky Normal Form

$S \rightarrow NP VP$ $S \rightarrow Aux NP VP$	0.8 0.1	$S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$	0.8 0.1 1.0
$S \rightarrow VP$	0.1	$S \rightarrow book include prefer$	
		$S \rightarrow Verb NP$ S $\rightarrow VP PP$	
$NP \rightarrow Pronoun$	0.2		
$NP \rightarrow Proper-Noun$	0.2		
NP → Det Nominal Nominal → Noun	0.6 0.3		
Nominal → Nominal Noun Nominal → Nominal PP VP → Verb	0.2 0.5 0.2		
VP → Verb NP VP → VP PP PP → Prep NP	0.5 0.3 1.0		
Lexicon (See previous slide for Noun \rightarrow book flight meal 0.1 0.5 0.2 0 Verb \rightarrow book include prefer 0.5 0.2 0.3	money .2		

Original Grammar

Chomsky Normal Form

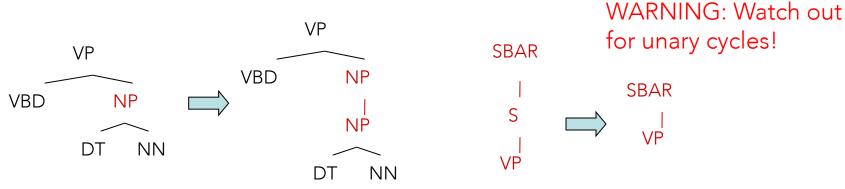
$S \rightarrow NP VP$	0.8	$S \rightarrow NP VP$	0.8
$S \rightarrow Aux NP VP$	0.1	$S \rightarrow X1 VP$	0.1
		$X1 \rightarrow Aux NP$	1.0
$S \rightarrow VP$	0.1	$S \rightarrow book include prefer$	
		0.01 0.004 0.006	
		$S \rightarrow Verb NP$	0.05
		$S \rightarrow VP PP$	0.03
NP → Pronoun	0.2	NP \rightarrow I he she me	
		0.1 0.02 0.02 0.06	
NP \rightarrow Proper-Noun	0.2	NP \rightarrow Houston NWA	
		0.16 .04	
NP \rightarrow Det Nominal	0.6	$NP \rightarrow Det Nominal$	0.6
Nominal → Noun	0.3	Nominal \rightarrow book flight meal money	
		0.03 0.15 0.06 0.06	
Nominal \rightarrow Nominal Noun	0.2	Nominal → Nominal Noun	0.2
Nominal \rightarrow Nominal PP	0.5	Nominal \rightarrow Nominal PP	0.5
$VP \rightarrow Verb$	0.2	VP \rightarrow book include prefer	••••
	0.1	0.1 0.04 0.06	
$VP \rightarrow Verb NP$	0.5	$VP \rightarrow Verb NP$	0.5
$VP \rightarrow VP PP$	0.3	$VP \rightarrow VP PP$	0.3
PP → Prep NP	1.0	$PP \rightarrow Prep NP$	1.0
·			1.0
Lexicon (See previous slide f	or full list):	
Noun \rightarrow book flight meal	money		
0.1 0.5 0.2 ().2		
Verb → book include prefe	≥r		
0.5 0.2 0.3			
0.5 0.2 0.5			

Advanced Topics I. CKY with Unary Rules

CNF + Unary Closure

We need unaries to be non-cyclic

- Calculate closure Close(R) for unary rules in R
 - Add X \rightarrow Y if there exists a rule chain X \rightarrow Z₁, Z₁ \rightarrow Z₂,..., Z_k \rightarrow Y with q(X \rightarrow Y = q(X \rightarrow Z₁)*q(Z₁ \rightarrow Z₂)*...*q(Z_k \rightarrow Y)
 - If no unary rule exist for X, add $X \rightarrow X$ with $q(X \rightarrow X)=1$ for all X in N



- Rather than zero or more unaries, always exactly one
- Alternate unary and binary layers
- What about $X \rightarrow Y$ with different unary paths (and scores)?

The CKY Algorithm

- Input: a sentence s = x₁ .. x_n and a PCFG = <N, Σ, S, R, q>
- Initialization: For i = 1 ... n and all X in N

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

• For I = 1 ... (n-1)

[iterate all phrase lengths]

For i = 1 ... (n-l) and j = i+l [iterate all phrases of length l]
 For all X in N [iterate all non-terminals]

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

also, store back pointers

$$bp(i, j, X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} \left(q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z) \right)$$

CKY with Unary Closure

- Input: a sentence s = $x_1 ... x_n$ and a PCFG = $\langle N, \Sigma, S, R, q \rangle$ Initialization: For $i = 1 \dots n$:
 - Step 1: for all X in N: $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$
 - Step 2: for all X in N:

$$\pi_U(i,i,X) = \max_{X \to Y \in Close(R)} (q(X \to Y) \times \pi(i,i,Y))$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-l) and j = i+l
 - Step 1: (Binary)
 - For all X in N [iterate all non-terminals]

 $\pi_B(i,j,X) = \max_{X \to YZ \in B, s \in \{i,\dots(j-1)\}} (q(X \to YZ) \times \pi_U(i,s,Y) \times \pi_U(s+1,j,Z))$

[iterate all phrase lengths]

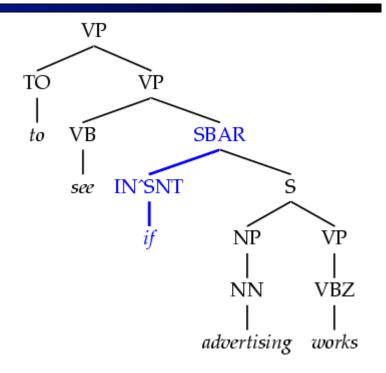
[iterate all phrases of length I]

- Step 2: (Unary)
 - For all X in N [iterate all non-terminals] $\pi_U(i, j, X) = \max_{X \to Y \in Close(R)} (q(X \to Y) \times \pi_B(i, j, Y))$

Advanced Topics 2. Grammar Refinements : Tag Splits

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.



- Partial Solution:
 - Subdivide the IN tag.

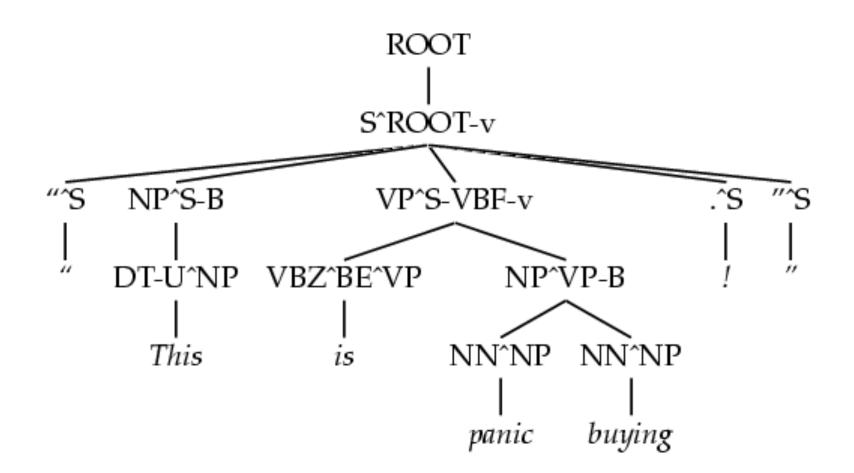
Annotation	F1	Size
v=h=2v	78.3	8.0K
SPLIT-IN	80.3	8.1K

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K

A Fully Annotated (Unlex) Tree



Some Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Unlexicalized	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.