CSE 517

Natural Language Processing Winter 2019

Dependency Parsing And Other Grammar Formalisms Yejin Choi - University of Washington

Dependency Grammar

For each word, find one parent.

A child is dependent on the parent. - A child is an argument of the parent. - A child modifies the parent.

For each word, find one parent.

For each word, find one parent.

Typed Depedencies

nsubj(shot-2, i-1) root(ROOT-0, shot-2) det(elephant-4, an-3) dobj(shot-2, elephant-4)

prep(shot-2, in-5) poss(pajamas-7, my-6) pobj(in-5, pajamas-7)

CFG vs Dependency Parse I

- Both are context-free.
- Both are used frequently today, but dependency parsers are more recently popular.
- CKY Parsing algorithm:
 - O (N^3) using CKY & unlexicalized grammar
 - O (N^5) using CKY & lexicalized grammar (O(N^4) also possible)
- Dependency parsing algorithm:
 - O (N^5) using naïve CKY
 - O (N^3) using Eisner algorithm
 - O (N^2) based on minimum directed spanning tree algorithm (arborescence algorithm, aka, Edmond-Chu-Liu algorithm – see edmond.pdf)
- Linear-time O (N) Incremental parsing (shift-reduce parsing) possible for both grammar formalisms

CFG vs Dependency Parse II

- CFG focuses on "constituency" (i.e., phrasal/clausal structure)
- Dependency focuses on "head" relations.
- CFG includes non-terminals. CFG edges are not typed.
- No non-terminals for dependency trees. Instead, dependency trees provide "dependency types" on edges.
- Dependency types encode "grammatical roles" like
 - nsubj -- nominal subject
 - dobj direct object
 - pobj prepositional object
 - nsubjpass nominal subject in a passive voice

CFG vs Dependency Parse III

- Can we get "heads" from CFG trees?
 - Yes. In fact, modern statistical parsers based on CFGs use hand-written "head rules" to assign "heads" to all nodes.
- Can we get constituents from dependency trees?
 - Yes, with some efforts.
- Can we transform CFG trees to dependency parse trees?
 - Yes, and transformation software exists. (stanford toolkit based on [de Marneffe et al. LREC 2006])
- Can we transform dependency trees to CFG trees?
 - Mostly yes, but (1) dependency parse can capture nonprojective dependencies, while CFG cannot, and (2) people rarely do this in practice

Mr. Tomash will remain as a director emeritus.

• A hearing is scheduled on the issue today.

 Projective dependencies: when the tree edges are drawn directly on a sentence, it forms a tree (without a cycle), and there is no crossing edge.

- Projective dependencies: when the tree edges are drawn directly on a sentence, it forms a tree (without a cycle), and there is no crossing edge.
- Non-projective dependency:

- which word does "on the issue" modify?
 - We scheduled a meeting on the issue today.
 - A meeting is scheduled on the issue today.
- CFGs capture only projective dependencies (why?)

Coordination across Constituents

Right-node raising:

- [[She bought] and [he ate]] bananas.
- Argument-cluster coordination:
 - I give [[you an apple] and [him a pear]].

•Gapping:

She likes sushi, and he sashimi

→ CFGs don't capture coordination across constituents:

Coordination across Constituents

- She bought <u>and</u> he ate bananas.
- I give you an apple <u>and</u> him a pear.

Compare above to:

- She bought <u>and</u> ate bananas.
- She bought bananas <u>and</u> apples.
- She bought bananas <u>and</u> he ate apples.

The Chomsky Hierarchy

The Chomsky Hierarchy

Туре	Common Name	Rule Skeleton	Linguistic Example
0	Turing Equivalent	$\alpha \rightarrow \beta$, s.t. $\alpha \neq \epsilon$	HPSG, LFG, Minimalism
1	Context Sensitive	$\alpha A\beta \rightarrow \alpha\gamma\beta$, s.t. $\gamma \neq \epsilon$	
—	Mildly Context Sensitive		TAG, CCG
2	Context Free	$A ightarrow \gamma$	Phrase-Structure Grammars
3	Regular	$A \rightarrow xB$ or $A \rightarrow x$	Finite-State Automata

- Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1987, 1994)
- Lexical Functional Grammar (LFG) (Bresnan, 1982)
- Minimalist Grammar (Stabler, 1997)
- Tree-Adjoining Grammars (TAG) (Joshi, 1969)
- Combinatory Categorial Grammars (CCG) (Steedman, 1986)

Advanced Topics - Eisner's Algorithm -

Naïve CKY Parsing

slides from Eisner

Eisner Algorithm (Eisner & Satta, 1999)

When adding a dependency arc (head is higher)

Eisner Algorithm (Eisner & Satta, 1999)

Eisner Algorithm (Eisner & Satta, 1999)

Eisner Algorithm

Base case:

$$\forall t \in \{ \trianglelefteq, \trianglerighteq, \lhd, \rhd\}, \ \pi(i, i, t) = 0$$

Recursion:

$$\pi(i, j, \leq) = \max_{i \leq k < j} \left(\pi(i, k, \rhd) + \pi(k+1, j, \triangleleft) + \phi(w_j, w_i) \right)$$

$$\pi(i, j, \geq) = \max_{i \leq k < j} \left(\pi(i, k, \rhd) + \pi(k+1, j, \triangleleft) + \phi(w_i, w_j)) \right)$$

$$\pi(i, j, \triangleleft) = \max_{i \leq k < j} \left(\pi(i, k, \triangleleft) + \pi(k+1, j, \trianglelefteq) \right)$$

$$\pi(i, j, \rhd) = \max_{i \leq k < j} \left(\pi(i, k, \succeq) + \pi(k+1, j, \rhd) \right)$$

• Final case:

$$\pi(1, n, \triangleleft \rhd) = \max_{1 \le k < n} \Big(\pi(1, k, \triangleleft) + \pi(k+1, n, \rhd) \Big)$$

Advanced Topics: Mildly Context-Sensitive Grammar Formalisms

I. Tree Adjoining Grammar (TAG)

Some slides adapted from Julia Hockenmaier's

TAG Lexicon (Supertags)

NP

the

NP*

- Tree-Adjoining Grammars (TAG) (Joshi, 1969)
- "... super parts of speech (supertags): almost parsing" (Joshi and Srinivas 1994)
- POS tags enriched with syntactic structure

likes

NP

also used in other grammar formalisms (e.g., CCG)

VΡ

NP

bananas

NP

Ν

TAG Lexicon (Supertags)

TAG rule 1: Substitution

TAG rule 2: Adjunction

Derivation tree:

 $\alpha 1$

Example: TAG Lexicon β1: $\alpha 2$: NP ′P* RB $\alpha 1$: John always $\boldsymbol{\varsigma}$ **VP** NP NP VBZ $\alpha 3$ eats NP tapas

Example: TAG Derivation

 $\dot{\alpha 2}$

Example: TAG Derivation

(1) Can handle long distance dependencies

(2) Cross-serial Dependencies

dat Jan Piet Marie de kinderen zag helpen laten zwemmen

- Dutch and Swiss-German
- Can this be generated from context-free grammar?

aⁿbⁿ: Cross-serial dependencies

Elementary trees:

Deriving aabb

Tree Adjoining Grammar (TAG)

- TAG: Aravind Joshi in 1969
- Supertagging for TAG: Joshi and Srinivas 1994
- Pushing grammar down to lexicon.
- With just two rules: substitution & adjunction
- Parsing Complexity:
 - O(N^7)

EDITED BY SRINIVAS BANGALORE + ARAVIND K. JOSHI

- Xtag Project (TAG Penntree) (<u>http://www.cis.upenn.edu/~xtag/</u>)
- Local expert!
 - Fei Xia @ Linguistics (<u>https://faculty.washington.edu/fxia/</u>)

II. Combinatory Categorial Grammar (CCG)

Some slides adapted from Julia Hockenmaier's

Categories

- Categories = types
 - Primitive categories
 - N, NP, S, etc
 - Functions
 - a combination of primitive categories
 - S/NP, (S/NP) / (S/NP), etc
 - V, VP, Adverb, PP, etc

Combinatory Rules

Application

- forward application: $x/y \rightarrow x$
- backward application: $y x \rightarrow x$
- Composition
 - forward composition: $x/y y/z \rightarrow x/z$
 - backward composition: $y \ge x \ge x \ge x$
 - (forward crossing composition: $x/y y \ge x \ge$)
 - (backward crossing composition: $x y y/z \rightarrow x/z$)
- Type-raising
 - forward type-raising: $x \rightarrow y / (y x)$
 - backward type-raising: $x \rightarrow y \setminus (y/x)$
- Coordination <&>
 - x conj x → x

Combinatory Rules 1 : Application

- Forward application ">"
 - X/Y Y → X
 - (S\NP)/NP NP \rightarrow S\NP
- Backward application "<"
 - Y X\Y → X
 - NP S\NP → S

Function

- likes := (S\NP) / NP
 - A transitive verb is a function from NPs into predicate S. That is, it accepts two NPs as arguments and results in S.
- Transitive verb: (S\NP) / NP
- Intransitive verb: S\NP
- Adverb: (S\NP) \ (S\NP)
- Preposition: (NP\NP) / NP
- Preposition: ((S\NP) \ (S\NP)) / NP

CCG Derivation:

Combinatory Rules

- Application
 - forward application: $x/y \rightarrow x$
 - backward application: $y \times y \rightarrow x$
- Composition
 - forward composition: $x/y y/z \rightarrow x/z$
 - backward composition: $y \ge x \ge x \ge x$
 - forward crossing composition: $x/y y \ge x \ge x$
 - backward crossing composition: x\y y/z \rightarrow x/z
- Type-raising
 - forward type-raising: x → y / (y\x)
 - backward type-raising: $x \rightarrow y \setminus (y/x)$
 - Coordination <&>
 - x conj x → x

Combinatory Rules 4 : Coordination

X conj X → X

 Alternatively, we can express coordination by defining conjunctions as functions as follows:

and := (X\X) / X

Examples from Prof. Mark Steedman

- Applicationforward application: x/y y → x
 - backward application: $y x \ge x$

- Application
 - forward application: $x/y \rightarrow x$
 - backward application: $y x \ge x$

Combinatory Rules

- Application
 - forward application: $x/y \rightarrow x$
 - backward application: $y x y \rightarrow x$
 - Composition
 - forward composition: x/y y/z → x/z
 - backward composition: $y \ge x \ge x$
 - forward crossing composition: $x/y y \ge x \ge x$
 - backward crossing composition: x\y y/z \rightarrow x/z
- Type-raising
 - forward type-raising: $x \rightarrow y / (y \setminus x)$
 - backward type-raising: $x \rightarrow y \setminus (y/x)$
- Coordination <&>
 - x conj x → x

 $\frac{\text{Marcel}}{\text{NP}} \quad \frac{\text{conjectured}}{(S \setminus \text{NP})/\text{NP}} \quad \frac{\text{and}}{(X \setminus X)/X} \quad \frac{\text{might}}{(S \setminus \text{NP})/((S \setminus \text{NP}))} \quad \frac{\text{prove}}{(S \setminus \text{NP})/\text{NP}} \quad \frac{\text{completeness}}{\text{NP}} \quad \frac{\text{completeness}}{\text{NP}}$

- Application
 - forward application: $x/y \rightarrow x$
 - backward application: $y x y \rightarrow x$
- Composition
 - forward composition: $x/y y/z \rightarrow x/z$
 - backward composition: $y \ge x \ge x$
 - forward crossing composition: $x/y y \ge x \ge x$
 - backward crossing composition: x\y y/z \rightarrow x/z

Combinatory Rules

- Application
 - forward application: $x/y \rightarrow x$
 - backward application: $y \times y \rightarrow x$
- Composition
 - forward composition: $x/y y/z \rightarrow x/z$
 - backward composition: $y \ge x \ge x$
 - forward crossing composition: $x/y y \ge x \ge x$
 - backward crossing composition: x\y y/z \rightarrow x/z

Type-raising

- forward type-raising: x → y / (y\x)
- backward type-raising: x → y \ (y/x)
- Coordination <&>
 - x conj x → x

Combinatory Rules 3 : Type-Raising

- Turns an argument into a function
- Forward type-raising: $X \rightarrow T / (T \setminus X)$
- Backward type-raising: $X \rightarrow T \setminus (T/X)$

For instance...

- Subject type-raising: NP \rightarrow S / (S \ NP)
- Object type-raising: NP \rightarrow (S\NP) \ ((S\NP) / NP)

Combinatory Rules 3 : Type-Raising

Combinatory Rules 3 : Type-Raising

Combinatory Categorial Grammar (CCG) mark steedman. CCG: Steedman in 1986 the syntactic. Pushing grammar down to lexicon. ess With just a few rules: application, composition, type-raising We've looked at only syntactic part of CCG A lot more in the semantic part of CCG (using lambda calculus) Parsing Complexity:

■ O(N^6)

- Local expert!
 - Luke Zettlemoyer (https://www.cs.washington.edu/people/faculty/lsz)