CSE 517
Natural Language Processing
Winter 2019

Dependency Parsing
And Other Grammar Formalisms

Yejin Choi - University of Washington

Dependency Grammar

For each word, find one parent.

Child Parent

\/

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.

/N N\

| shot an elephant

For each word, find one parent.

Child Parent

v

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.

A@A

| shot an elephant in my pajamas

For each word, find one parent.

Child Parent

v

A child is dependent on the parent.
- A child is an argument of the parent.
- A child modifies the parent.

NN A

| shot an elephant in my pajamas vyesterday

shot

N\

| elephant
P yesterday
/ In
an
pajamas
my

NN AT

| shot an elephant in my pajamas yesterday

Typed Depedencies

nsubj(shot-2, i-1) prep(shot-2, in-5)
root(ROOT-0, shot-2) poss(pajamas-7, my-6)
det(elephant-4, an-3) oobj(in-5, pajamas-7)

dobj(shot-2, elephant-4)

pPrep
obj
nsubj dobj e
/ N\ = /,/p\
| shot an elephant in my pajamas

1 2 3 4 S 6 /

CFG vs Dependency Parse |

Both are context-free.

Both are used frequently today, but dependency parsers are more
recently popular.

CKY Parsing algorithm:

= O (NA3) using CKY & unlexicalized grammar

= O (NA5) using CKY & lexicalized grammar (O(NA4) also possible)
Dependency parsing algorithm:

= O (NAD) using naive CKY

= O (NA3) using Eisner algorithm

= O (NA2) based on minimum directed spanning tree algorithm
(arborescence algorithm, aka, Edmond-Chu-Liu algorithm — see

edmond.pdf)

Linear-time O (N) Incremental parsing (shift-reduce parsing) possible
for both grammar formalisms

CFG vs Dependency Parse |l

CFG focuses on “constituency” (i.e., phrasal/clausal structure)
Dependency focuses on “head” relations.

CFG includes non-terminals. CFG edges are not typed.

No non-terminals for dependency trees. Instead, dependency
trees provide “dependency types” on edges.

Dependency types encode “grammatical roles” like
* nsubj -- nominal subject
» dobj - direct object
» pobj - prepositional object
* nsubjpass — nominal subject in a passive voice

CFG vs Dependency Parse |l

Can we get “heads” from CFG trees?

» Yes. In fact, modern statistical parsers based on CFGs use
hand-written “head rules” to assign “heads” to all nodes.

Can we get constituents from dependency trees?
= Yes, with some efforts.

Can we transform CFG trees to dependency parse trees?

* Yes, and transformation software exists. (stanford toolkit
based on [de Marneffe et al. LREC 2006])

Can we transform dependency trees to CFG trees?

= Mostly yes, but (1) dependency parse can capture non-
projective dependencies, while CFG cannot, and (2) people
rarely do this in practice

Non Projective Dependencies

= Mr. Tomash will remain as a director emeritus.

= A hearing is scheduled on the issue today.

Non Projective Dependencies

» Projective dependencies: when the tree edges are
drawn directly on a sentence, it forms a tree (without a
cycle), and there is no crossing edge.

= Projective Dependency: /\A\
= Fg:

/\/\/\/\

Mr. Tomash will remain a d|rector emeritus.

Non Projective Dependencies

Projective dependencies: when the tree edges are
drawn directly on a sentence, it forms a tree (without a
cycle), and there is no crossing edge.

Non-projective dependency:

=g: m K?\\
/\m

A hearing is scheduled on the issue today.

Non Projective Dependencies

= which word does “on the issue” modify?
» We scheduled a meeting on the issue today.
» A meeting is scheduled on the issue today.

= CFGs capture only projective dependencies
(why?)

Coordination across Constituents

*Right-node raising:

» [[She bought] and [he ate]] bananas.
*Argument-cluster coordination:

= | give [[you an apple] and [him a pear]].

*Gapping:

= She likes sushi, and he sashimi

= CFGs don't capture coordination across
constituents:

Coordination across Constituents

» She bought and he ate bananas.
= | give you an apple and him a pear.

Compare above to:
» She bought and ate bananas.
* She bought bananas and apples.

* She bought bananas and he ate apples.

The Chomsky Hierarchy

Recursively Enumerable Languages
Context-Sensitive Languages
Mildly Context-Sensitive Languages
Context-Free Languages
<Reguar (or Right Linear) Languages>

The Chomsky Hierarchy

Type Common Name Rule Skeleton Linguistic Example
Turing Equivalent oa— f,st. aFe HPSG, LFG, Minimalism
Context Sensitive aAB — ayP,s.t. yFe
Mildly Context Sensitive TAG, CCG
Context Free A—y Phrase-Structure Grammars
Regular A—xBorA—x Finite-State Automata

Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag,
1987, 1994)

Lexical Functional Grammar (LFG) (Bresnan, 1982)
Minimalist Grammar (Stabler, 1997)

Tree-Adjoining Grammars (TAG) (Joshi, 1969)
Combinatory Categorial Grammars (CCG) (Steedman, 1986)

Advanced Topics
- Eisner's Algorithm -

Nalve CKY Parsing

D
O(nSN3) if N O(n) A~ g
nonterminals CmeinatiOﬂS 7[,\ /C\\
i]k 0
goal
takes
Afi:>> takes
I A
I a8 o
: takes to

Do L A L

§ e @ ko

slides from Eisner

Eisner Algorithm (Eisner & Satta, 1999)

al

This happens O\

only once as the

very final step i

Without adding a

dependency arc i ~ \
i I k i J k

When adding a] [TV

dependency arc A N~
(head is higher) , | I | |<
i j i j

Eisner Algorithm (Eisner & Satta, 1999)

A triangle is a head with
some left (or right) subtrees. | goal

B

One trapezoid\

per
dependen</
I
AN

Eisner Algorithm (Eisner & Satta, 1999)

goa\
combinations \
V4 a
i j ki j k

O(n3) 7

L
combinations D D
i J k i | k

O(n)

A

combinations

o

Gives O(n®) dependency grammar
parsing

“isner Algorithm

= Base case:
Vit e {, >, <, >}, w(,1,t) =0
= Recursion:

(i, j, Q) = max (7?2 k,>)+7m(k+ 1,7,)—l—qb(wj,wi))
(i, J,) = Jax (W) +7(k+ 1,7,)+</5(’wz'a’wj)))
(i, j, < —Zgl]?% (7T’L]<Z<] —|—7Tk—|—1],_))
(i, 5,0 —21%?2{] (7TZ]€|> +m(k+1,7,))

= Final case:

m(1,n, <) = max (w(1, k, <)+ m(k + 1,7, >))

Advanced Topics:

Mildly Context-Sensitive Grammar Formalisms

. Tree Adjoining Grammar
(TAG)

Some slides adapted from Julia Hockenmaier's

TAG Lexicon (Supertags)

Tree-Adjoining Grammars (TAG) (Joshi, 1969)

" ... super parts of speech (supertags): almost VP
parsing” (Joshi and Srinivas 1994) 7N
. . . VP* PP
POS tags enriched with syntactic structure N\
also used in other grammar formalisms (e.g., CCQG) P NP
S with
RN
NP /VP\ NP NP
NP Y NP /N 7N
| D NP* NP* PP
7N\
N - |
likes the F|’ NP

bananas with

TAG Lexicon (Supertags)

S
VP RN
RN PP S*
RB VP* / \
| P NP
always |
with
S
RN
NP VP
NP
/7 N\
NP /7 N\
T NP b NP
U |
likes the
bananas

VP
RN
VPr P

P
7N\
P NP
|

with

NP

N
NP* PP

/N

P NP

with

TAG rule 1: Substitution

Derived tree:

Derivation tree:

/OL 1\
o2 o3

TAG rule 2: Adjunction

Derived tree:

Bl:x

Auxiliary

tree~__

Foot node

ol

B1

Derivation tree:

Example

o2:

NP
John

o3

i

tapas

- TAG Lexicon

ol:
PN
NP VP
VBZ NP
eats

B1:

VP

F}B

always

VP*

Example: TAG Derivation

o] ol:
/\ 5N
o2 o3 NP /VP\
VI,?:Z NP
eats
B1:
a2: /VP\ o3:
NP ﬁB VP* NP

|
John always ta||:as

Example: TAG Derivation

al

: S
/ \ NP/ \VP

a2 Pl a3 | RN
John VBZ NP

eats tapas

B1

VP

FTB VP~*

always

Example: TAG

always

NP
John RB

Derivation

PN

VP
VP*
N

s
VIIBZ NIP

eats tapas

(1) Can handle long distance dependencies

S
V S S
| N
does NP VP NP((\S
I A* |
sl V S | /\
| who V S
think S
does Np VP
S | /\
/\ Bill S
NP(wh); S | N
| /\ think NP VP
who NP VP | <N
| o~ Harry \|/ NIPi
Harry VNP lkes

likes &

(2) Cross-serial Dependencies

dat Jan Piet Marie de kinderen zag helpen laten zwemmen
L | ! | |]

Dutch and Swiss-German
Can this be generated from context-free grammar?

a"b": Cross-serial dependencies

S
Elementary trees: /? /|
a S a S
\ 1\
b S* b
Deriving aabb
c /‘? /
/é > a S > a/ |
a \b a §\b
S S3
\b \b

Tree Adjoining Grammar (TAG)

TAG: Aravind Joshi in 1969
Supertagging for TAG: Joshi and Srinivas 1994

SUPERTAGGING

Pushing grammar down to lexicon.

With just two rules: substitution & adjunction

Parsing Complexity:
= O(NA7)

Xtag Project (TAG Penntree) (http://www.cis.upenn.edu/~xtag/)

Local expert!
» Fei Xia @ Linguistics (https://faculty.washington.edu/fxia/)

I. Combinatory Categorial
Grammar (CCQG)

Some slides adapted from Julia Hockenmaier's

Categories

= Categories = types
* Primitive categories
= N, NP, S, etc
= Functions

= a combination of primitive categories
= S/NP, (S/NP)/ (S/NP), etc
=\, VP, Adverb, PP, etc

Combinatory Rules

m) Application
» forward application: x/y y = x
» backward application: y x\y = x
= Composition
» forward composition: x/y y/z = x/z
» backward composition: y\z x\y = x\z
» (forward crossing composition: x/y y\z = x\z)
* (backward crossing composition: x\y y/z = x/z)
* Type-raising
» forward type-raising: x =2y / (y\x)
» backward type-raising: x =y \ (y/x)
= Coordination <&>
" X COnj X =P X

Combinatory Rules 1 : Application

= Forward application “>"
= XYY =2 X

= (S\NP)/NP NP =» S\NP

= Backward application “<"
=Y X\Y =2 X

= NP S\NP = S

Function

likes := (S\NP) / NP

= A transitive verb is a function from NPs into predicate S. That is, it
accepts two NPs as arguments and results in S.

Transitive verb: (S\NP) / NP
Intransitive verb: S\NP
Adverb: (S\NP)\ (S\NP) YN
Preposition: (NP\NP) / NP |
Preposition: ((S\NP) \ (S\NP)) / NP likes

CCG Derivation:
Mary likes musicals
NP (S\NP)/NP NP
S\NP
5 <
Mary likes musicals
CFG Derivation: NP\ V\ /NP
VP
d

S

Combinatory Rules

= Application
= forward application: x/y y = x
* backward application: y x\y =» x
= Composition
» forward composition: x/y y/z = x/z
» backward composition: y\z x\y = x\z
» forward crossing composition: x/y y\z =2 x\z
* backward crossing composition: x\y y/z = x/z
= [ype-raising
» forward type-raising: x =2y / (y\x)
» backward type-raising: x =y \ (y/x)
‘ Coordination <&>

" X COnj X =P X

Combinatory Rules 4 : Coordination

= Xconj X=X

= Alternatively, we can express coordination by
defining conjunctions as functions as follows:

= and = (X\X)/ X

Coordination with CCGQG

| loathe and detest opera

NP (S\NP)/NP CONJ (S\NP)/NP NP
(S\WP)/NP

S\NP ’

S

Examples from Prof. Mark Steedman

Coordination with CCGQG

Marcel conjectured and proved completeness
NP (S\NP)/NP (X\X)/X (S\NP)/NP NP
Application

e forward application: x/y y =» x
e backward application: y x\y = x

Coordination with CCGQG

Marcel conjectured and proved completeness
NP (S\NP)/NP (X\X)/X (S\NP)/NP § NP
((S\NP)/NP)\((S\NP)/NP) _
(S\NP)/NP §
S\NP<
S
Application

e forward application: x/y y =» x

e backward application: y x\y = x

Combinatory Rules

= Application
= forward application: x/y y = x
* backward application: y x\y =» x
Composition
= forward composition: x/y y/z = x/z
» backward composition: y\z x\y = x\z
» forward crossing composition: x/y y\z =2 x\z
* backward crossing composition: x\y y/z = x/z
= [ype-raising
» forward type-raising: x =2y / (y\x)
» backward type-raising: x =y \ (y/x)
= Coordination <&>

" X COnj X =@ X

Coordination with CCGQG

Marcel conjectured and might prove completenesi
NP (S\NP)/NP (X\X)/X (S\NP)/((S\NP)) (S\NP)/NP _ NP |
Application

e forward application: x/y y = x

e backward application: y x\y = x
Composition

e forward composition: x/y y/z = x/z

e backward composition: y\z x\y =2 x\z

e forward crossing composition: x/y y\z = x\z

e backward crossing composition: x\y y/z = x/z

Coordination with CCGQG

Marcel conjectured and might prove completenes:
NP (S\NP)/NP (X\X)/X (S\NP)/((S\NP)) (S\NP)/NP s NP
(S\NP)/NP>
((S\NP)/NP)\((S\NP)/NP)
(S\NP)/NP §
S\NP<
S
Application

e forward application: x/y y = x

e backward application: y x\y = x
Composition

e forward composition: x/y y/z = x/z

e backward composition: y\z x\y =2 x\z

e forward crossing composition: x/y y\z = x\z

e backward crossing composition: x\y y/z = x/z

Combinatory Rules

= Application
» forward application: x/y y = x
» backward application: y x\y = x
= Composition
» forward composition: x/y y/z =¥ x/z
» backward composition: y\z x\y = x\z
» forward crossing composition: x/y y\z = x\z
» backward crossing composition: x\y y/z =» x/z
- Type-raising
» forward type-raising: x =2y / (y\x)
» backward type-raising: x =y \ (y/x)
= Coordination <&>

" X conj X =P X

Combinatory Rules 3 : Type-Raising

= Turns an argument into a function

» Forward type-raising: X = T / (T\X)
= Backward type-raising: X = T\ (T/X)

For instance...
= Subject type-raising: NP =S/ (S\ NP)
= Object type-raising: NP =» (S\NP) \ ((5\NP) / NP)

Combinatory Rules 3 : Type-Raising

| dislike and Mary likes musicals

NP (S\NP)/NP CONJ NP (S\NP)/NP NP

Application

e forward application: x/y y = x

e backward application: y x\y = x

Type-raising

o forward type-raising: x =2y / (y\x)

e backward type-raising: x = y \ (y/x)

e Subject type-raising: NP = S/ (S\ NP)

e Object type-raising: NP =» (S\NP) \ ((5\NP) / NP)
Coordination <&>

® X CONj X =P X

Combinatory Rules 3 : Type-Raising

| dislike and Mary likes musicals
NP (S\NP)/NP CONJ NP (S\NP) /NP NP

/

cmary’ Ax.Ap.like'xy

, >1 , >T
S/(S\NP S/(S\NP)
M mary
>B
S/NP S/NP
: Ax.like'x mary'
<&>
S/NP

Combinatory Categorial Grammar (CCGQG)

CCG: Steedman in 1986

Pushing grammar down to lexicon.

With just a few rules: application, composition, type-raising

We've looked at only syntactic part of CCG »
A lot more in the semantic part of CCG (using lambda Calculu/s)¢ly

Parsing Complexity:
= O(N"6)

Local expert!
= Luke Zettlemoyer (https://www.cs.washington.edu/people/faculty/Isz)

