CSE 517
Natural Language Processing
- Winter 2018! -

Yejin Choi
Computer Science & Engineering

UNIVERSITY of WASHINGTON
What is NLP like today?
We know how to *use* language!

Do we know how to *teach* language?

Yes! for humans; Not so well for machines
Which of these is the hardest for humans?

1. summarizing a children’s book in a few sentences
2. making a small talk with a child
3. reading a movie script and answering a question about the story
4. reading a wikipedia article and answering a question about the article
5. translating a Korean text to a Polish text
Various NLP tasks

1. summarizing a children’s book in a few sentences
2. making a small talk with a child
3. reading a movie script and answering a question about the story
4. reading a wikipedia article and answering a question about the article
5. translating a Korean text to a Polish text

Which of these is the hardest for machines?
How to automatically induce the word-level or phrase-level alignments between two languages?

(without learning how to understand either language properly)
Machine Translation (2013 google translate)
Speech Translation

- **Automatic translation**
 -- not perfect, but good enough for people to use
 -- real time translation with audio
 -- first statistical model (IBM model 1) came out in 1993
 -- first MT service based on statistical model in 2007
Information Search & Extraction

- Web search today can handle natural language queries better
- Often presents us structured knowledge
Knowledge Graph: “things not strings”
US Cities: Its largest airport is named for a World War II hero; its second largest, for a World War II battle.
Conversation with Devices

“What's the best movie to see this weekend”
That would probably start an argument. But here's a list of highly-regarded movies:

- **NORTH BY NORTHWEST**
 Released July 17, 1959
 100%

- **THE TREASURE OF THE SIERRA...**
 Released January 6, 1948
 100%

What can I help you with?

“You need to start understanding me Siri”

I'll make a note of that.

“Yeah you better make a note of that”

Noted:

Of that
Conversational AI with long-term coherence

- Grand challenge: 20 minutes
- My initial guess: 1-2 minutes
- Our (winning) system --- 10+ minutes
system architecture? sorry, not this kind:
Analyzing public opinion, making political forecasts

- Today: In 2012 election, automatic sentiment analysis actually being used to complement traditional methods (surveys, focus groups)
- Past: “Sentiment Analysis” research started in 2002
- Future: computational social science and NLP for digital humanities (psychology, communication, literature and more)
- Challenge: Need statistical models for deeper semantic understanding --- subtext, intent, nuanced messages
Language and Vision

“Imagine, for example, a computer that could look at an arbitrary scene anything from a sunset over a fishing village to Grand Central Station at rush hour and produce a verbal description. This is a problem of overwhelming difficulty, relying as it does on finding solutions to both vision and language and then integrating them. I suspect that scene analysis will be one of the last cognitive tasks to be performed well by computers”

-- David Stork (HAL’s Legacy, 2001) on A. Rosenfeld’s vision
What begins to work (e.g., Kuznetsova et al. 2014)

The flower was so vivid and attractive.

Blue flowers are running rampant in my garden.

Spring in a white dress.

Blue flowers have no scent. Small white flowers have no idea what they are.

Scenes around the lake on my bike ride.

This horse walking along the road as we drove by.

We sometimes do well: 1 out of 4 times, machine captions were preferred over the original Flickr captions:
But many challenges remain
(better examples of when things go awry)

The couch is definitely bigger than it looks in this photo.

My cat laying in my duffel bag.

Yellow ball suspended in water.

Incorrect Object Recognition

Incorrect Scene Matching

Incorrect Composition

A high chair in the trees.
How did NLP begin?
NLP History: pre-statistics

(1) Colorless green ideas sleep furiously.
(2) Furiously sleep ideas green colorless.

- It is fair to assume that neither sentence (1) nor (2) (nor indeed any part of these sentences) had ever occurred in an English discourse. Hence, in any statistical model for grammaticalness, these sentences will be ruled out on identical grounds as equally "remote" from English. Yet (1), though nonsensical, is grammatical, while (2) is not.” (Chomsky 1957)

- 70s and 80s: more linguistic focus
 - Emphasis on deeper models, syntax and semantics
 - Toy domains / manually engineered systems
 - Weak empirical evaluation
NLP: machine learning and empiricism

“Whenever I fire a linguist our system performance improves.” – Jelinek, 1988

- **1990s: Empirical Revolution**
 - Corpus-based methods produce the first widely used tools
 - Deep linguistic analysis often traded for robust approximations
 - *Empirical evaluation* is essential

- **2000s: Richer linguistic representations used in statistical approaches, scale to more data!**

- **2010s: you decide!**
What’s in the class?
Buffalo buffalo Buffalo buffalo buffalo
buffalo Buffalo buffalo

Buffalo buffalo Buffalo buffalo buffalo.

Homonym = a word form that has two or more distinct meanings
Homophone = a word which is pronounced the same as another word but differs in meaning

- The city of Buffalo, New York.
- The animal "buffalo," in the plural (equivalent to "buffaloes"), in order to avoid articles.
- The verb "buffalo," meaning to confuse, deceive or intimidate.

Substituting the synonym "bison" for "buffalo" (animal), "bully" for "buffalo" (verb) and leaving "buffalo" to mean the city, yields:

Buffalo bison, whom other Buffalo bison bully, themselves bully Buffalo bison.

Text excerpted from the Wikipedia articles Buffalo buffalo Buffalo buffalo buffalo buffalo buffalo buffalo, Homonym and Homophone. 26 March 2007
Probabilistic Models of Language

- Is it possible to model $p(x)$, where x is a sentence of any length with any words such that $p(x)$ is a valid probability distribution?
- Is it possible to automatically infer linguistic categories of words (part of speech) just by reading lots of text with no supervision?
- Is it possible to automatically infer linguistic structure of sentences just by reading lots of text with no supervision?
Neural network models of language

(Google NMT Oct 2016)
Problem: Ambiguities

- Headlines:
 - Enraged Cow Injures Farmer with Ax
 - Ban on Nude Dancing on Governor’s Desk
 - Teacher Strikes Idle Kids
 - Hospitals Are Sued by 7 Foot Doctors
 - Iraqi Head Seeks Arms
 - Stolen Painting Found by Tree
 - Kids Make Nutritious Snacks
 - Local HS Dropouts Cut in Half

- Why are these funny?
Syntactic Analysis

Hurricane Emily howled toward Mexico's Caribbean coast on Sunday packing 135 mph winds and torrential rain and causing panic in Cancun, where frightened tourists squeezed into musty shelters.

- **SOTA:** ~90% accurate for many languages when given many training examples, some progress in analyzing languages given few or no examples
Semantic Ambiguity

At last, a computer that understands you like your mother.

- **Direct Meanings:**
 - It understands you like your mother (does) [presumably well]
 - It understands (that) you like your mother
 - It understands you like (it understands) your mother

- **But there are other possibilities, e.g. mother could mean:**
 - a woman who has given birth to a child
 - a stringy slimy substance consisting of yeast cells and bacteria; is added to cider or wine to produce vinegar

- **Context matters, e.g. what if previous sentence was:**
 - Wow, Amazon predicted that you would need to order a big batch of new vinegar brewing ingredients. 😊

[Example from L. Lee]
Dark Ambiguities

- Dark ambiguities: most structurally permitted analyses are so bad that you can’t get your mind to produce them.

 This analysis corresponds to the correct parse of

 “This will panic buyers!”

- Unknown words and new usages

- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this.
Problem: Scale

- People *did* know that language was ambiguous!
 - ...but they hoped that all interpretations would be “good” ones (or ruled out pragmatically)
 - ...they didn’t realize how bad it would be
Corpora

- A corpus is a collection of text
 - Often annotated in some way
 - Sometimes just lots of text
 - Balanced vs. uniform corpora

- Examples
 - Newswire collections: 500M+ words
 - Brown corpus: 1M words of tagged “balanced” text
 - Penn Treebank: 1M words of parsed WSJ
 - Canadian Hansards: 10M+ words of aligned French / English sentences
 - The Web: billions of words of who knows what
Problem: Sparsity

- However: sparsity is always a problem
 - New unigram (word), bigram (word pair)
Class Administrivia
Site & Crew

- **Site:** https://courses.cs.washington.edu/courses/cse517/19wi/
- **Canvas:** https://canvas.uw.edu/courses/1254676/
- **Crew:**
- **Instructor:** Yejin Choi (office hour: Thu 4:30 – 5:30)
 --- except this week: Thu 5:15 – 6:15
- **TA:**
 Hannah Rashkin
 Max Forbes
 Rowan Zellers
Textbooks and Notes

- **Textbook (recommended but not required):**
 - Jurafsky and Martin, Speech and Language Processing, 2nd Edition
 - Manning and Schuetze, Foundations of Statistical NLP
 - GoodFellow, Bengio, and Courville, "Deep Learning" (free online book available at deeplearningbook.org)

- **Lecture slides & notes are required**
 - See the course website for details

- **Assumed Technical Background:**
 - Data structure, algorithms, strong programming skills, probabilities, statistics
What is this Class?

- Three aspects to the course:
 - Linguistic Issues
 - What are the range of language phenomena?
 - What are the knowledge sources that let us disambiguate?
 - What representations are appropriate?
 - How do you know what to model and what not to model?
 - Statistical Modeling Methods
 - Increasingly complex model structures
 - Learning and parameter estimation
 - Efficient inference: dynamic programming, search, sampling
 - Engineering Methods
 - Issues of scale
 - Where the theory breaks down (and what to do about it)
- We’ll focus on what makes the problems hard, and what works in practice...
Approximate Schedule

| 1 | I. Introduction
| | II. Words: Language Models (LMs) |
| 2 | II. Words: Unknown Words (Smoothing)
| | III. Sequences: Hidden Markov Models (HMMs) |
| 3 | III. Sequences: Hidden Markov Models (HMMs) & EM |
| 4 | V. Trees: Probabilistic Context Free Grammars (PCFG)
| | V. Trees: Grammar Refinement |
| 5 | V. Trees: Dependency Grammars
| | IV. Learning (Feature-Rich Models): Log-Linear Models |
| 6 | IV. Learning (Structural Graphical Models): Conditional Random Fields (CRFs) |
| 7 | VII. Semantics: Frame Semantics
	VII. Semantics: Distributed Semantics, Embeddings
8	VIII. Deep Learning: Neural Networks
9	VIII. Deep Learning: More NNs
10	VIII. Deep Learning: Yet More NNs
Grading & Policy

Grading:
- 4 homework (55%)
- In-class workbook (10%)
- final project (30%)
- course/discussion board participation (5%)

Policy:
- All homework will be completed individually.
- Final projects can be done in groups.
- Academic honest and plagiarism.

Participation and Discussion:
- Class participation is expected and appreciated!!!
- Email is ok, but we prefer the message board at Canvas whenever possible
Homework (55%)

Four major programming assignments:

1. **Language Models (10%)**
 - Conditional probabilities
 - Handling of unknown words & smoothing

2. **HMMs (15%)**
 - Viterbi algorithm with longer context
 - Forward backward & EM (bonus)

3. **Structured Inference (15%)**
 - How to convert a simple perceptron to structured perceptron

4. **Deep Learning (15%)**
 - Reading comprehension with pytorch
Project (30%)

- Final project proposal (5%)
- Final project poster presentation (12%)
- Final project report (13%)

- Work as a team of 1 – 3 people
- Must contain some NLP components
- Ok to recycle your current research project
Class Requirements and Goals

- **Class requirements**
 - Uses a variety of skills / knowledge:
 - Probability and statistics
 - Decent coding skills
 - Data structure and algorithms (dynamic programming!)
 - (Optional) basic linguistics background
 - ML/AI helps if you’ve taken either before, but not necessary
- **Class goals**
 - Learn the fundamental concepts and techniques
 - Learn current engineering practices
 - Learn how to advance the field!
Comparisons with Other Classes

- **Compared to ML**
 - Typically multivariate, dynamic programming everywhere
 - Structural Learning & Inference
 - Insights into language matters (a lot!)
 - DL: RNNs, LSTMs, Seq-to-seq, Attention, …

- **Compared to CompLing classes**
 - More focus on core algorithm design, technically more demanding in terms of math, algorithms, and programming

- **Compared to 447 / 547**
 - 70% overlap depending on who taught the class
Add Code / Audit

- Sorry, the class has been overbooked for a while
 - higher priorities on PhD students in ECE & linguistics
 - grads in other fields: please consider CompLing classes or CSE 447/547
 - ugrads in CSE: please take 447/547!
- Audit – ok if there are seats (still) not taken